
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2008

Structural induction: towards automatic ontology
elicitation
Adrian Silvescu
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Silvescu, Adrian, "Structural induction: towards automatic ontology elicitation" (2008). Retrospective Theses and Dissertations. 15872.
https://lib.dr.iastate.edu/rtd/15872

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15872&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15872&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15872&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15872&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15872&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15872&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F15872&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/15872?utm_source=lib.dr.iastate.edu%2Frtd%2F15872&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Structural induction: towards automatic ontology elicitation

by

Adrian Silvescu

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:
Vasant Honavar, Major Professor

Drena Dobbs
Jack Lutz

William Robinson
Dimitris Margaritis

Iowa State University

Ames, Iowa

2008

Copyright c© Adrian Silvescu, 2008. All rights reserved.

www.manaraa.com

UMI Number: 3307040

3307040
2008

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

www.manaraa.com

ii

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

ACKNOWLEDGEMENTS . xi

ABSTRACT . xiii

CHAPTER 1. GENERAL INTRODUCTION 1

1.1 Structural Induction: Towards Automatic Ontology Elicitation 2

1.1.1 The main paradigm . 3

1.1.2 The general method for Ontology Elicitation 5

1.1.3 Ontology Elicitation and Usage overview 9

1.2 Thesis Organization . 12

CHAPTER 2. TEMPORAL BOOLEAN NETWORK MODELS OF GE-

NETIC NETWORKS AND THEIR INFERENCE FROM GENE EX-

PRESSION TIME SERIES . 16

Abstract . 16

2.1 Introduction . 17

2.2 Gene Expression Data Analysis . 19

2.3 Temporal Boolean Networks . 20

2.3.1 Boolean Networks . 20

2.3.2 Motivations for Generalizing the Boolean Network Model 22

2.3.3 Temporal Boolean Networks . 23

2.4 Theoretical Results . 24

www.manaraa.com

iii

2.5 Inference of Temporal Boolean Networks from Time Series Data 26

2.6 Experimental Setting and Results . 28

2.7 Summary and Discussion . 32

2.8 Proof of Theoretical Results . 33

2.9 PostScript . 35

Bibliography . 35

CHAPTER 3. LEARNING CLASSIFIERS FOR ASSIGNING PROTEIN

SEQUENCES TO GENE ONTOLOGY FUNCTIONAL FAMILIES. . . . 39

Abstract . 39

3.1 Introduction . 40

3.2 Method . 43

3.2.1 Classification using a Probabilistic Model 43

3.2.2 Naive Bayes Classifier - NB . 44

3.2.3 Naive Bayes k-grams . 44

3.2.4 Naive Bayes (k) . 45

3.2.5 On Naive Bayes k-gram vs. NB(k) . 46

3.2.6 SVM k-grams . 47

3.3 Experimental setup and results . 47

3.4 Summary and Discussion . 51

3.5 PostScript . 52

Bibliography . 52

CHAPTER 4. GENERATION OF ATTRIBUTE VALUE TAXONOMIES

FROM DATA FOR ACCURATE AND COMPACT CLASSIFIER CON-

STRUCTION . 55

Abstract . 55

4.1 Introduction . 56

4.2 Learning attribute value taxonomies from data 58

4.2.1 Learning AVT from data . 58

www.manaraa.com

iv

4.2.2 Pairwise divergence measures . 60

4.3 Evaluation of AVT-Learner . 60

4.3.1 AVT guided variants of standard learning algorithms 61

4.4 Experiments . 62

4.4.1 Experimental setup . 62

4.4.2 Results . 63

4.5 Summary and discussion . 66

4.5.1 Summary . 66

4.5.2 Discussion . 68

4.5.3 Related work . 69

4.5.4 Future work . 70

4.6 Postscript . 70

Bibliography . 70

CHAPTER 5. ABSTRACTION SUPERSTRUCTURING NORMAL FORMS 76

Abstract . 76

5.1 Introduction . 77

5.2 Compositionality and Structural Induction . 79

5.3 Abstraction SuperStructuring Normal Forms . 82

5.3.1 Generative Grammars and Turing Machines 82

5.3.2 Structural Induction, Generative Grammars and Motivation 84

5.3.3 ASNF Theorems . 85

5.4 Additional concepts and results . 95

5.4.1 Abstractions And Reverse Abstractions 95

5.4.2 Minimality . 95

5.4.3 Grow & Shrink theorems . 98

5.5 Structural Induction and the fundamental structural elements 102

5.5.1 Reasons for postulating Hidden Variables 104

5.5.2 Radical Positivism . 105

www.manaraa.com

v

5.5.3 General theories of the world . 106

5.5.4 Hume principles of connexion among ideas 109

5.6 Conclusions . 110

Bibliography . 111

CHAPTER 6. COMBINING ABSTRACTION AND SUPERSTRUCTUR-

ING . 113

Abstract . 113

6.1 Introduction . 114

6.2 Combining Abstraction and SuperStructuring 116

6.2.1 ConstructFeatures: Abstraction + SuperStructuring 117

6.2.1.1 Constructing Abstractions . 120

6.2.1.2 Feature Selection . 124

6.2.2 Naive Bayes Multinomial Classifier . 125

6.2.3 Related work . 125

6.3 Experiments . 126

6.3.1 Experimental setup . 126

6.3.2 Experimental results . 128

6.4 Conclusions . 129

Bibliography . 129

CHAPTER 7. INDEPENDENCE, DECOMPOSABILITY AND FUNCTIONS

WHICH TAKE VALUES INTO AN ABELIAN GROUP 138

Abstract . 138

7.1 Introduction . 139

7.2 Decomposition and Independence . 140

7.3 Independence & Decomposition in F·→AG . 142

7.3.1 Abelian Groups . 142

7.3.2 Conditional Independence with respect to a function f 144

7.3.3 Properties of If (·, ·|·) . 146

www.manaraa.com

vi

7.3.4 Markovian Properties of Independence 148

7.3.5 The factorization theorem . 151

7.3.6 Completeness . 153

7.4 Particular Cases . 154

7.5 Conclusions and Discussion . 155

7.6 Proofs of the theorems . 157

7.6.1 Proof of Theorem 1 (independence properties) 157

7.6.2 Proof of Theorem 2 (Markov properties equivalence) 158

7.6.3 The proof of Theorem 3 (factorization) 160

7.6.4 The proof of the Moebius Inversion Lemma 163

7.6.5 The proof of Theorem 5 (completeness) 164

7.6.6 Proof that: Intersection + Weak Union ⇒ Weak Contraction 166

Bibliography . 166

CHAPTER 8. GENERAL CONCLUSIONS 168

8.1 Summary . 168

8.2 Contributions . 170

8.3 Future work . 173

www.manaraa.com

vii

LIST OF TABLES

Table 3.1 Kinase data set results - classification accuracy estimated by 10-fold

cross validation (Note: NB method applies only for k=1; SVM k-grams

was found to be infeasible because of computational and memory re-

quirements k > 3). 49

Table 3.2 Kinase/Ligase data set results - classification accuracy estimated by 10-

fold cross validation (Note: NB method applies only for k=1; SVM k-

grams was found to be infeasible because of computational and memory

requirements k > 3). 49

Table 3.3 Kinase/Ligase/Helicase/Isomerase data set results - classification accu-

racy estimated by 10-fold cross validation (Note: NB method applies

only for k=1; SVM k-grams was found to be infeasible because of com-

putational and memory requirements k > 3). 49

Table 4.1 Accuracy of NBL and AVT-NBL on UCI data sets 65

Table 4.2 Parameter size of NBL and AVT-NBL on selected UCI data sets 67

Table 4.3 Accuracy of NBL and AVT-NBL for k-ary AVT-Learner 68

Table 5.1 Correspondence between Structural Induction and Generative Gram-

mars . 85

www.manaraa.com

viii

LIST OF FIGURES

Figure 2.1 A Boolean Network - from left to right: the network, its wiring diagram

and the functional dependency table. (Akutsu et al. 1999 [1]) 22

Figure 2.2 A Temporal Boolean Network . 24

Figure 2.3 A decision tree that represents the fact that if genes g2 and g3 are

expressed (turned ON) at time t leads to the expression of gene g1

(turned ON) at time t+ 1 . 26

Figure 2.4 Effect of varying k on inference of a boolean net with 16 genes (n = 16)

and T = 3. 30

Figure 2.5 Effect of varying k on inference of a 4-ary network with 16 genes (n = 16)

and T = 3. 31

Figure 2.6 Effect of varying T on inference of a boolean net with 16 genes (n = 16)

and T = 3. 31

Figure 3.1 Graphical depiction of the dependence between the elements in a se-

quence of five elements: a) independence model (yields the Naive Bayes

classifier); b) pairwise dependence; and c) 3-wise dependence. 45

Figure 4.1 Human-made AVT from ‘odor’ attribute of UCI AGARICUS-LEPIOTA

mushroom data set. 56

Figure 4.2 Pseudo-code of AVT-Learner . 60

Figure 4.3 AVT of ‘odor’ attribute of UCI AGARICUS-LEPIOTA mushroom data

set generated by AVT-Learner using Jensen-Shannon divergence (binary

clustering) . 61

www.manaraa.com

ix

Figure 4.4 Evaluation of AVT using AVT-NBL . 63

Figure 4.5 The estimated error rates of classifiers generated by NBL and AVT-

NBL on AGARICUS-LEPIOTA data with different percentages of miss-

ing values. HT stands for human-supplied AVT. JS denotes AVT con-

structed by AVT-Learner using Jensen-Shannon divergence. 64

Figure 4.6 The error rate estimates of the Standard Naive Bayes Learner (NBL)

compared with that of AVT-NBL on DERMATOLOGY data. JS de-

notes AVT constructed by AVT-Learner using Jensen-Shannon divergence. 66

Figure 4.7 The size (as measured by the number of parameters) of the Standard

Naive Bayes Learner (NBL) compared with that of AVT-NBL on AGARICUS-

LEPIOTA data. HT stands for human-supplied AVT. JS denotes AVT

constructed by AVT-Learner using Jensen-Shannon divergence. 67

Figure 4.8 AVT of ‘odor’ attribute of UCI AGARICUS-LEPIOTA mushroom data

set generated by AVT-Learner using Jensen-Shannon divergence (with

quaternary clustering) . 69

Figure 5.1 Feynman diagram for the electron positron Annihilation into a photon

followed by photon Disintegration into an electron positron pair again . 105

Figure 5.2 Theory of the world: (top) - Radical Positivist, (bottom) - with Hidden

Variables . 108

Figure 6.1 Comparison of the Abstraction + SuperStructuring method with other

methods on the Eukaryotes dataset 3-grams. The graph represents

cross-validation accuracy (5-fold) as a function of the number of fea-

tures used. UNIGRAM uses 24 features; SS_ONLY 3-grams uses 8000

features. ABS_ONLY varies in the range 1-24 features; ABS+SS and

FSEL+SS vary in the range1-400 features. 130

www.manaraa.com

x

Figure 6.2 Comparison of the Abstraction + SuperStructuring method with other

methods on the Eukaryotes dataset 3-grams - blowout of the [1-40] range.

The graph represents cross-validation accuracy (5-fold) as a function of

the number of features used. UNIGRAM uses 24 features; SS_ONLY 3-

grams uses 8000 features. ABS_ONLY varies in the range 1-24 features;

ABS+SS and FSEL+SS vary in the range 1-40 features. 131

Figure 6.3 Comparison of the Abstraction + SuperStructuring method with other

methods on the Eukaryotes dataset 2-grams. The graph represents

cross-validation accuracy (5-fold) as a function of the number of fea-

tures used. UNIGRAM uses 24 features; SS_ONLY 2-grams uses 400

features. ABS_ONLY varies in the range 1-24 features; ABS+SS and

FSEL+SS vary in the range 1-400 features. 132

Figure 6.4 Comparison of the Abstraction + SuperStructuring method with other

methods on the Prokaryotes dataset 3-grams. The graph represents

cross-validation accuracy (5-fold) as a function of the number of fea-

tures used. UNIGRAM uses 22 features; SS_ONLY 3-grams uses 8000

features. ABS_ONLY varies in the range 1-22 features; ABS+SS and

FSEL+SS vary in the range 1-400 features. 133

Figure 6.5 Comparison of the Abstraction + SuperStructuring method with other

methods on the Prokaryotes dataset 2-grams. The graph represents

cross-validation accuracy (5-fold) as a function of the number of fea-

tures used. UNIGRAM uses 22 features; SS_ONLY 2-grams uses 400

features. ABS_ONLY varies in the range 1-22 features; ABS+SS and

FSEL+SS vary in the range 1-400 features. 134

Figure 7.1 Illustration of the intuition behind the factorization theorem: A set of

pairwise, rougher decompositions are assembled into one holistic, finer

decomposition over the maximal cliques of the induced independence

graph. 152

www.manaraa.com

xi

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to my advisor Dr. Vasant

Honavar for guiding the research presented in this dissertation throughout my Ph.D. student

years. He has been a constant source of motivation and encouragement. He helped me to

develop my own views and opinions about the research I undertook. I thank him for being

always accessible and for providing invaluable feedback on my work. Thanks for organizing

the AI seminar which brought up thoughtful discussions and helped me to broaden my views

about Artificial Intelligence. Most importantly, I thank him for his friendship and for his

encouragement when I felt confused or overwhelmed. I would especially like to thank him for

his support during my occasional hard times.

I would like to thank Drena Dobbs for teaching such refreshing courses in Molecular Biology

and for tirelessly unraveling for me its secrets. I would like to thank William Robinson for

teaching some of the best classes I took at the Iowa State University and elsewere which

reopened my interests in philosophy and kept them open ever since. I would like to thank Jack

Lutz for his wonderful class on Randomness and Computation. I would like to thank Dimitris

Margaritis for serving on my committee and providing helpful comments. I would also like to

thank David Fernandez-Baca for the very nice and exciting Algorithms classes he taught.

I would like to thank the members of the AI Lab and especially my collaborators for the

wonderful times we spent doing research together. My interaction with you has made me love

research and led to my bettering.

I would like to thank and gratefully acknowledge the financial support that I have received

during my studies. From the Computer Science Department as a teaching assistantship. From

Pioneer Hi-Bred as a fellowship for which I am very grateful as it has allowed me to bootstrap

www.manaraa.com

xii

my research program. I am also very grateful for the research assistantships funded by grants

from the National Science Foundation (IIS 0219699) and the National Institutes of Health

(GM066387) as they allowed me to continue my research program at a sustained pace.

www.manaraa.com

xiii

ABSTRACT

Induction is the process by which we obtain laws (and more encompassing - theories) about

the world. This process can thought as aiming to derive two aspects of a theory: a Structural

aspect and a Numerical aspect respectively. The Structural aspect is concerned with the entities

modeled and their interrelationship, also known as ontology. The Numerical aspect is concerned

with the quantities involved in the relationships among the above-mentioned entities along with

uncertainties either postulated to exist in the world or inherent to the nature of the induction

process.

In this thesis we will focus more on the structural aspect hence the name: Structural

Induction: toward Automatic Ontology Elicitation. In order to deal with the problem of

Structural Induction we need to solve two main problems: 1. We have to say what we mean

by Structure (What?); and 2. We have to say how to get it (How?). In this thesis we give

one very definite answer to the first question (What?) and we also explore how to answer

the second question (How?) in some particular cases. A comprehensive answer to the second

question (How?) in the most general setup will involve dealing very carefully with the interplay

between the Structural and Numerical aspects of Induction and will represent a full solution to

the Induction problem. This is a vast enterprise and we will only be able touch some aspects

of this issue.

The main thesis presented in this work is that the fundamental structural elements based on

which theories are constructed are Abstraction (grouping similar entities under one overarching

category) and Super-Structuring (grouping into a bigger unit topologically close entities - in

particular spatio-temporally close). This thesis is supported by showing that each member of

the Turing equivalent class of General Generative Grammars can be decomposed in terms of

www.manaraa.com

xiv

these operators and their duals (Reverse Abstraction and Reverse SuperStructuring, respec-

tively). Thus, if we are to believe the Computationalistic Assumption (that the most general

way to present a finite theory is by the means of an entity expressed in a Turing equivalent

formalism) we have proved that our thesis is correct. We will call this thesis the Abstraction +

SuperStructuring thesis. The rest of the thesis is concerned with issues in the vein opened by

the second question presented above (How?): Given that we have established what we mean

by Structure, how to get it?.

www.manaraa.com

1

CHAPTER 1. GENERAL INTRODUCTION

Induction is the process by which we obtain laws (and more encompassing - theories) about

the world. This process can be thought as aiming to derive two aspects of a theory: a Structural

/ Qualitative / Algebraic aspect and a Numerical / Quantitative / Analytical (+ Probabilistic)

aspect. The Structural aspect is concerned with the entities modeled and their interrelation-

ship, in philosophical parlance known as ontology. The Numerical aspect is concerned with

the quantities involved in the relationships among the above-mentioned entities along with un-

certainties either postulated to exist in the world or inherent to the nature of the induction

process. Given that the Structural aspect is settled then the Numerical aspect can be more

easily handled by the tools of Analysis, Statistics, Machine Learning and Empirical Sciences.

The problem of devising the Structural aspect automatically - Automatic Ontology Elicitation

(a.k.a. Ontology Learning) is however a somewhat less explored and settled field. This problem:

Structural Induction - Automatic Ontology Elicitation is the main topic of this thesis.

In order to deal with the problem of Structural Induction we need to solve two main prob-

lems: 1.We have to say what we mean by Structure (What?); and 2.We have to say how to

get it (How?). In this thesis we give a very definite answer to the first question (What?)

and we also explore how to answer the second question (How?) in some particular cases. A

comprehensive answer to the second question (How?) in the most general setup will involve

dealing very carefully with the interplay between the Structural and Numerical aspects of In-

duction and will represent a full solution to the Induction problem. This is a vast enterprise

and we will only be able touch some aspects of this issue.

The main thesis presented in this work is that the fundamental structural elements based on

which theories are constructed are Abstraction (grouping similar entities under one overarching

www.manaraa.com

2

category) and Super-Structuring (grouping into a bigger unit topologically close entities - in

particular spatio-temporally close). This thesis is supported by showing that each member of

the Turing equivalent class of General Generative Grammars can be decomposed in terms of

these operators and their duals (Reverse Abstraction and Reverse SuperStructuring, respec-

tively). Thus, if we are to believe the Computationalistic Assumption (that the most general

way to present a finite theory is by the means of an entity expressed in a Turing equivalent

formalism) we have proved that our thesis is correct. We will call this thesis the Abstraction

+ SuperStructuring thesis. We prove this claim in Chapter 5 - Abstraction SuperStructuring

Normal Forms. The rest of the chapters are concerned with issues in the vein opened by the

second question presented above (How?): Given that we have established what we mean by

Structure, how to get it?.

The rest of this chapter will proceed as follows: In the next section we will examine in a

little bit more detail the problem of Structural Induction / Ontology Learning and also try to

build some intuitions about the Abstraction and SuperStructuring operators. In a certain sense

this is the starting point of an inductive argument for these structural elements, which will be

augmented latter on with experimental results and also with a deductive argument in Chapter

5. Then in the last section of this chapter we give an overview of the thesis organization.

1.1 Structural Induction: Towards Automatic Ontology Elicitation

The overwhelming majority of problem settings rely on the existence of some primitive

concepts/features (representing an initial / apriori ontology) in terms of which the problem,

including its goals, is phrased and then subsequently solved. The choice of this initial ontology

may have a big impact on the tractability of the problem under consideration (e.g., learning the

definition of an arch is more difficult to get from raw pixel data, than from images annotated

with primitive geometric objects or contours). We are interested in automatic means of deriving

such an ontology. More exactly, given some data, from a particular domain under study, elicit

a set of concepts and relations among them that are “relevant” to the particular domain under

study. The set of concepts and their relations represent the proposed ontology.

www.manaraa.com

3

This section is organized as follows: In the next subsection we outline our main paradigm

regarding ontology elicitation. Then in the subsection following we examine a possible way

to implement it. Finally, we address the problem of how to use ontologies and the possible

interactions with the generation process.

1.1.1 The main paradigm

The main paradigm to guide our attempts to solve the ontology elicitation problem can be

summarized as follows:

“There are at least two essential operations that people make when trying to make sense of, or

structure a new application domain: Super-Structuring and Abstraction. Super-Structuring is

the process of grouping and subsequently naming a set of entities that occur within “¨proximity”¨

of each other, into a more complex structural unit (e.g., four wheels and a chassis on top of

them will be called a car). Abstraction, on the other hand, establishes that a set of entities

belong to the same category, based on a certain notion of “similarity” among these entities, and

subsequently names that category (e.g., cows, cats and dogs will be called mammals).” [13]

Note that in order to make more precise the above stated paradigm we need to define more

exactly what we mean by “proximity” and “similarity”.

In order to define the notion of “proximity” we assume that the data from our application

domain has a topology (neighborhood system) imposed over it. A topological space is a space

where for each element in the space a set of neighborhoods has been defined. The neighbors in

this topological space will be considered proximal entities. For example, in the case of sequence

data we can define as neighbors of an entity the entities located to its left and to its right in

the sequence. In the case of images we can have q neighborhood given by the four / eight

adjacent pixels, or the pixels within a radius of k pixels of the pixel under question. In general,

for arbitrary discrete topologies (i.e., graphs - these topologies can occur in relational learning

settings or network mining for example) we can define as proximal entities, the entities that are

reachable from the entity in question by traversing no more than k edges in the graph (sphere

of radius k). Note that the notion of “proximity” will depend on the size of the neighborhood

www.manaraa.com

4

system that we take into consideration. In the more traditional setup of Multivariate Statistics

case all attributes of an instance are proximal to each other and we have consequently a complete

graph topology within one instance.

On way to proceed to define “similarity” on the other hand, is to use a distance measure

to specify how close two entities are. The distance will be calculated as a function of some

features of the two entities between which the distance is computed. Next we will examine

some intuitions about what we should consider when we attempt to define similarity.

Structuralism vs. Functionalism Based on the choice of features in terms of which we

define our distance measure, we can identify at least two extreme approaches: Structuralism

and Functionalism.

To recapitulate: we are trying to define a distance that reflects similarity between two

entities. This naturally leads us to examine the two major philosophies for defining semantics:

Structuralism and Functionalism. Assessing the similarity in meaning between two objects

is dependent on how we define what we mean by those two objects. Structuralism asserts

that what an object is and therefore what it means can be defined in terms of, its structural

features. For example, in order to define a chair we say that it has four legs, a rectangular

surface on top of them and a back support (note the analogy with class definitions in Object

Oriented Programming [5]). Functionalism on the other hand asserts that the meaning of an

object resides with its usage. That is, a chair is something that you can sit on, regardless of its

form or shape. And if you intentionally kill somebody with that chair, then the chair is for all

practical purposes a weapon. (The equivalent of functionalism in Object Oriented Programming

is represented by the notion of Interface [5] which basically specifies a set of properties necessary

for the object to satisfy in order for it to be able to be fit within certain contexts. For example,

a Stack needs to have one way of implementing the isEmpty/Push/Pop/Clear functions in order

to be used as a Stack.) Briefly stated the functionalist claim is that meaning is about ends

and not about the means by which these ends are met. While Functionalism is presumably

more appealing, it raises the question of how to operationalize the intuition behind it, in order

to define similarity in meaning. That is, how to operationalize the intuition that two objects

www.manaraa.com

5

Algorithm 1 Ontology Elicitation Procedure
until a terminal criteria has been reached

1. Pick one of the following two operations

(a) abstractions = Abstract(data);

(b) super-structures = SuperStructure(data)

2. data = Annotate(data, [with the] abstractions / [or] super-structures)

repeat

are similar in meaning if they are used in the similar ways. For cases where the entities under

question occur within certain contexts one way to define similarity in meaning is to say that

two entities are similar if they occur in similar contexts. Note that given a topological space

and hence a notion of proximity (given by neighborhood-ness) the notion of context can easily

be defined in terms of proximal entities. We will return to the problem of defining similarity

in meaning in the next subsection, where we will make it more precise in the case of sequences

(such as for words in text and amino-acids in proteins). So far, we have established that if

the data is embedded in a topological space we can define similarity between two entities by

examining the similarity of proximal elements.

One final remark about Functionalism vs. Structuralism is that these two are extreme

positions and that a more convenient middle ground may be found between the two by using

both structural and contextual features in order to define meaning and similarity in meaning.

In the next subsection we will describe a quite general method for operationalizing Ontology

Elicitation based on Abstraction and SuperStructuring and illustrate it on an example.

1.1.2 The general method for Ontology Elicitation

A fairly generic ontology elicitation procedure base on the operations of Abstraction and

SuperStructuring is summarized by the Algorithm 1.

In Algorithm 1 Abstract is a procedure that returns the set of the k − ABS top ranked

abstractions as defined by the distance that measures similarity. The more similar the entities

grouped together by an abstraction, the higher this abstraction is ranked. SuperStructure is a

www.manaraa.com

6

procedure that returns the set of the k−SS top ranked SuperStructures formed out of entities

that are close to each other according to the given notion of proximity. The structures can be

ranked according to the likelihood of the composing entities occurring together to form an unit

significantly above chance level. This can be easily modeled by an independence test: the more

statistically dependent the components of the structure appear to be, the more likely it is that

this is a true structure and not an artifact composed out of a set of entities occurring within

proximity of each other by mere chance.

Note that the two operations SuperStructuring and Abstraction have contrary effects.

Namely, Abstraction increases compression but decreases modeling accuracy while SuperStruc-

turing increases modeling accuracy while increasing model size because we are considering an

increasing set .

Operationalization of the previous intuition In order to operationalize the general

method presented in the previous in 1 we need to make more precise the notions of similarity,

proximity, context and true structure vs. artifact. This will enable us to specify more precisely

the Abstract and SuperStructure procedures.

In the case of sequence data, given a set of sequences (e.g., text sentences or protein se-

quences) one way to operationalize the above paradigm is as follows:

1. proximity - occurring on adjacent positions in the sequence or being no farther than k

positions;

2. context - the entities occurring one position to the left or one position to the right, or

within k positions to the left or right respectively;

3. true structure vs. artifact - can be defined using an independence test that will detailed

later (the more dependent a set of entities are the more likely they are to be a true

structure versus an artifact).

4. similarity (in meaning between two entities (e.g., words)) - two entities (words) are similar

if they are used similarly, that is, if they are used in similar contexts. This kind of idea

www.manaraa.com

7

can be traced down to the British Empiricists [10] - but most notably Jeremy Bentham

[1] and even Aristotle - and more recently to Gottlob Frege and Betrand Russell and also

Zelig Harris (1954) in the philosophy of linguistics, where it resides under the name of the

distributional hypothesis [6]. W.V.O. Quine singles it out as one of the "five milestones

of empiricism:" - "the view of sentences as primary in semantics, and of names or other

words as dependent on sentences for their meaning, is a fruitful idea that began perhaps

with Jeremy Bentham’s theory of fictions." [11]. We will make this notion of similarity

between entities based on their contexts even more precise in the definition of Abstraction

outlined below.

Given the previous definitions one way we can proceed to ope rationalize Abstraction and

SuperStructuring is as follows:

SuperStructure(S → AB) - returns the top k−SS structures made out of two components

that co-occur within proximity of each other and are unlikely to occur together by chance. One

way to measure this is by an independence test - the more statistically dependent two entities

are, the less likely it is that the current structure is an artifact. Ranking the sequences according

to this dependence likelihood allows us to order the putative structures in order to be able to

pick the most promising. We can perform the independence test by measuring the Kullback-

Leibler divergence [3] between the probability of two components occurring together and the

probability of them occurring together as independent events (i.e., the product of the marginal

probability distributions) - KL(P (AB)||P (A)P (B)).

Another possibility is to rank structures according to how frequently they occur or equiva-

lently, how much they would compress the data if the structure name would be used instead of

the whole structure, thus leading to an MDL type of approach. Note: Chi-squared can also be

used as a test for independence, but the Chi-squared test is only an approximation of the KL

divergence [8].

Abstraction(S → A|B) - returns the top k − SS abstractions (clusters) of two entities,

ranked according to the distance between the contexts in which the two abstracted entities

appear. More exactly, we can define the distance between the left contexts of the two entities,

www.manaraa.com

8

Algorithm 2 Ontology Elicitation example
Step1 data:

Mary loves John.
Sue loves Curt.
Mary hates Curt.

Abstractions 1:
A1→Mary|Sue - because they have similar right contexts: loves.
A2→ John|Curt - because they have similar left contexts: loves.

Step 2 data:
[Mary, A1] loves [John, A2].
[Sue, A1] loves [Curt, A2].
[Mary, A1] hates [Curt, A2].

Abstractions 2:
A3→ loves|hates - because of high similarity between their left and right contexts:

This illustrates how abstraction begets more Abstraction (A3 not possible on the raw data).
Step 3 data:

[Mary, A1] [loves, A3] [John, A2].
[Sue, A1] [loves, A3] [Curt, A2].
[Mary, A1] [hates, A3][Curt, A2].

Structures 3:
S1→ A1A3 because it occurs three times
S2→ A3A2 because it occurs three times

This illustrates how Abstraction begets more SuperStructuring (S1 and S2 are not possible on
the raw data)
Structures 4:

S3→ S1A2
S4→ A1S2

This illustrates how SuperStructuring begets more SuperStructuring

as the Jensen-Shannon distance [9] between the probability distribution of entities that occur

to the left each entity. Similarly we define a distance for the right contexts. Subsequently, in

order to obtain a distance between two entities we can sum up the distances corresponding to

the left and right contexts, respectively. We can even consider two types of abstractions, one

for the right context and one for the left one.

Example In Algorithm 2 we present a run of our algorithm on a text toy data set in order

to illustrate some of the intuitions and to examine the potential power of this procedure run

multiple times:

Note that the abstractions and super-structures derived at one step beget more abstractions

www.manaraa.com

9

Algorithm 3 Generic Ontology Elicitation
repeat

1. Propose New Constructs - Using the Data
2. Evaluate the desirability of the proposed New Constructs

according to a Scoring Function
3. Select Posited Constructs according to the ranking of

the New Constructs by the Scoring Function
4. Annotate Data with Posited Constructs

until a termination criterion reached

and super-structuring at subsequent steps, which cannot be derived directly, based on the initial

raw data. Note also that we can allow multiple ontologies / points of view by allowing one

entity to be abstracted or super-structured in more than one way (e.g, A3 in S1 and S2) . The

multiple ontologies / points of view are a very common thing in real life, e.g., somebody can

be both a father and a researcher.

So far, we have showed one way to operationalize the ideas presented in the main paradigm.

In what follows we will examine the Ontology Elicitation process from higher ground and also

from the perspective of its usage in solving a task within the given domain under study. The

added value obtained by using various ontological constructs in solving the task, such as the

Abstraction and SuperStructuring discussed above, can also be turned into a feedback signal

that can influence the the Ontology Elicitation process itself.

1.1.3 Ontology Elicitation and Usage overview

As we have seen before, we need to use concepts in order to define and solve tasks in different

application domains. Oftentimes, however the input data is not described in terms of the most

appropriate set of concepts that are needed in order to formulate and solve a problem. As

a consequence there is a need for methods that can automatically elicit these concepts - i.e.,

Automatic Ontology Elicitation.

An overall strategy for approaching the Automatic Ontology Elicitation problem is described

in Algorithm 3.

In order to operationalize this algorithm we need to solve the Proposition, Evaluation,

Selection and Annotation problems. While various steps may turn out to be quite problem

www.manaraa.com

10

dependent, one important problem that we need to address, in general, is to provide a scoring

function that will allow us to execute the step 2 - Evaluate and step 3 - Select. This scoring

function will attempt to assess the usefulness of the Posited Constructs for solving the task

we have in hand. We will distinguish these utility assessments setups along the following two

dimensions:

1. model-free vs. model-based

2. conditional vs. unconditional

We examine these distinctions in what follows.

Model free vs. Model based scoring The scoring functions that can be used to

assess the desirability of the New Constructs can be divided on one axis into two categories:

model-based and model-free .

The model-free scoring functions attempts an a priori evaluation of the quality of the

posited new constructs without respect to any class of models. An example of such an evaluation

strategy is the information gain or Kullback-Leibler divergence outlined above. The constructed

ontology is then used for modeling but its creation is total independent of its usage.

The model-based scoring functions evaluate the quality of the posited New Constructs

with respect to a given model m ∈ M . Thus, given a scoring function score : M → R for

evaluating the quality of models in the class of models M , we will compute the quality of the

a newly posited construct c generally as: quality(c) = score(m∪ {c}, Data)− score(m,Data).

That is, the quality of a construct c with respect to a model m and a data set Data expresses

basically how much more useful the construct c is aside from the already existing model m in

modeling the Data. In this way the very usefulness of a construct for the modeling task at

hand is used as a driving force for the Ontology Elicitation process.

While model-based setups seem more desirable than the model-free ones, they also come

at additional costs as in a naive approach for every posited construct the corresponding aug-

mented model needs to be evaluated against the Data. A distinction that is similar in spirit,

yet more particular, is used in the feature selection literature [14] where the model-free setup

www.manaraa.com

11

is called the filter -based approach and the model-based setup is called the wrapper -based

approach, respectively.

Conditional vs. Unconditional The value of ontological constructs is tightly coupled

with the way the constructs are used. In humans the process of forming such constructs is

triggered by certain patterns of usage. Based on the type of usage we distinguish two types of

scoring functions and consequently, two types of ontology elicitation procedure:

In the conditional , a.k.a. predictive case, we evaluate the quality of a posited construct

with respect to how predictive it is of a certain goal. A typical model-free score function for the

class conditional case is the Information Gain about the class conditioned on the appearance

of the construct vs. not appearance. In the model-based case, a typical scoring function would

be the difference between the class conditional likelihood / MDL of the data given the model

with and without construct. Note that the real difference between the model-free and the

model-based is the fact that the information gain in the model based is conditioned also on the

model.

In the unconditional case, on the other hand, the posited construct is evaluated with

respect to how well it contributes to modeling the input data. Thus, for example, in the

model based case the scoring function is the difference between the likelihood / MDL score

of data given the model with and without the construct. Contrast this with the conditional

case, where we had the conditional likelihood / MDL score. In the model-free case, some

examples of scores are Information Gain or the Kullback-Leibler divergence discussed above.

For example, the score for SuperStructuring two adjacent entities can be the information gained

by modeling the joint probability of A and B versus approximating it with the product of the

their marginals - KL(P (AB)||P (A)P (B)). Another possible score for SuperStructuring is how

much compression can be achieved by using one symbol instead of using the adjacent A and

B. In the case of abstraction of two entities A and B the score can be conceived in terms of

the information lost by substituting A and B with one symbol versus the compression that can

be gained this way. Note that minimizing the information lost is equivalent to maximizing the

negative information gained by not abstracting vs. abstracting, hence this score is also from

www.manaraa.com

12

the information gain family.

An alternative way to name the conditional vs. unconditional distinction is goal-driven

vs. goal-free. The goal-free / unconditional setup denotes a purely informational approach to

the modeling problem where we are only interested in improving our knowledge, i.e., knowledge

acquisition is treated as a goal per se. In the goal-driven / conditional setup however the

knowledge and information that we acquire about the world is not valued but in as much as

it allows us to better achieve our goal. Note that while the conditional setup seems more

desirable because of being quite focused this may also prove a liability as the usefulness of the

derived constructs may not necessarily transfer well across goals / tasks, but even to new setups

of the same task.

Because of the various trade-offs among the above-mentioned dimensions it is hard to make

a case for one of these extremes, and in all likelihood the most desirable results will be obtained

by a nontrivial combination in the spanned space. In this thesis however we will mostly examine

the conditional model-free setup as it is the fastest and easiest to evaluate.

Given this brief overview of the main ideas, intuitions and motivations that we believe to

stand behind the Ontology Elicitation process we are ready to describe the results presented

in the thesis.

1.2 Thesis Organization

The results presented in the thesis can be divided into two sets: Results that have been

obtained prior to the full development of the theoretical part of the Abstraction + SuperStruc-

turing thesis; and results obtained afterward.

The results obtained prior to the proof of Abstraction + SuperStructuring thesis are exposed

in chapters 2, 3 and 4. These prior exploratory results along with earlier less comprehensive

theoretical results have at least partially enabled and then further reinforced the belief that the

Abstraction + SuperStructuring thesis in its full generality may have a chance to be proved at

a point in time when this was not a given. They contain in chronological order:

1. an exploration of SuperStructuring in the temporal domain - Temporal Boolean Networks

www.manaraa.com

13

(Chapter 2) - Learning temporal SuperStructures by the means of decision trees in the

context of predicting the behavior of Genetic Regulatory Networks.

2. an exploration of SuperStructuring in the spatial domain (sequences) - Naive Bayes k

- NB(k) (Chapter 3) - Various extensions of Naive Bayes, which treats input features

independently, to the the case of k-th order dependencies in the context of function

prediction for protein sequences.

3. an exploration of Abstraction learning in the Multivariate case - Learning Attribute Value

Taxonomies (Chapter 4) - Learning Taxonomies (a particular way of organizing Abstrac-

tions) in the Multivariate case.

In Chapter 5 - Abstraction SuperStructuring Normal Forms - we present the theoretical argu-

ment for the of the Abstraction + SuperStructuring thesis. We show that Abstraction, Super-

Structuring and their duals: Reverse Abstraction and Reverse SuperStructuring respectively

are enough in order to produce the Turing equivalent class of General Generative Grammars.

Under the Computationalistic Assumption (a.k.a. Church-Turing thesis) this means that every

theory can be expressed in terms of Abstraction, SuperStructuring and their duals: Reverse

Abstraction and Reverse SuperStructuring. We also show that this result can be seen as prov-

ing (under the Computationalistic Assumption) a more than 200 years claim of the philosopher

David Hume regarding the “principles of connexion among ideas” [7].

In Chapter 6 - Combining Abstraction and SuperStructuring - appropriate extensions of

the earlier results from chapters 3 and 4 allow us to present a baseline solution for acquiring

Abstraction and SuperStructuring in combination. The experimental results show that using

the two principles of Abstraction and SuperStructuring, either in isolation - Chapters 2,3 and 4,

but furthermore even better in combination - Chapter 6, can produce significant improvements

in the comprehensibility (as measured by size) and / or accuracy of the models produced.

In Chapter 7 - Independence and Decomposability - we present a theoretical analysis of

the notion of (Variable) Independence and how such a structural analysis may impact various

Numerical components, such as value functions, probabilities, relations, etc. Independence is

www.manaraa.com

14

basically the complement of SuperStructuring - that is, if two “proximal” entities are inde-

pendent then there is little need to consider their union as bigger structural unit - hence no

SuperStructuring. The aforementioned analysis was triggered by the need to better under-

stand the finer structure of SuperStructuring as simple minded solutions were revealed to be

somewhat problematic in the previous explorations done in Naive Bayes k - NB(k) (Chapter

3). The naive approaches were suffering from a “double counting” problem, or more precisely

“double multiplying” since they are probabilities. In Chapter 7 we explore this problem in the

unified framework provided by Abelian groups which allows us to treat uniformly the additive,

multiplicative and relational setups (hence “double counting“ in an additive setup becomes

equivalent to “double multiplying” in a multiplicative setup). Our main result shows that we

can “boil down” a set of pairwise Conditional Independences (and consequently pairwise factor-

izations) to a “global” factorization of a function f over the maximal cliques of the associated

independence graph. This theorem is the natural generalization of the Hammersley-Clifford

theorem [2] which holds for probability distributions, to the more general case of functions that

take values into an Abelian Group. The theory developed in this chapter subsumes: factoriza-

tion of probability distributions, additive decomposable functions and decomposable relations,

as particular cases of functions over Abelian Groups. The main enabler for the proof is not

surprisingly the Moebius Inversion lemma [12], which is the main combinatorial theorem that

addresses the “double counting” problem.1

In Chapter 8 we conclude, present the main contributions of the thesis and also examine

some possible future work.

The chapters are self contained and are organized in a paper format. Chapters 2, 3, 4 and

7 have already been published in peer-reviewed journals or conferences and Chapters 5 and 6

are to be submitted.

Bibliography

[1] J. Bentham. Bentham’s Theory of Fictions, (ed. C.K. Ogden), 1932.
1The more widely known principle of inclusion and exclusion which is also known to deal with the “double

counting” problem is just a particular case of the Moebius Inversion lemma.

www.manaraa.com

15

[2] J. Besag. Spatial Interaction and Statistical Analysis of Lattice Systems. Journal of the

Royal Statistical Society. Series B (Methodological), 36(2):192-236, 1974.

[3] T. M. Cover and J. A. Thomas. Elements of Information Theory. New York: Wiley, 1991.

[4] M. Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3rd

ed., Addison-Wesley, 2004.

[5] J. Gosling, B. Joy, G. Steele, and T. Bracha. The Java Language Specification. Sun Mi-

crosystems, 2000.

[6] Harris, Z. Distributional structure. Word, 10(23):146-162, 1954.

[7] D. Hume. An Enquiry Concerning Human Understanding. Hackett Publ Co. 1993.

[8] S. Kullback. Information theory and statistics. John Wiley and Sons, NY, 1959.

[9] J. Lin. Divergence measures based on the shannon entropy. IEEE Trans. on Information

Theory, 37(1):145-151, January 1991.

[10] J. Locke. An Essay Concerning Human Understanding. Nidditch, Peter H. ed., Oxford:

Clarendon Press, 1975.

[11] W. V. O. Quine. Things and their Place in Theories. Theories and Things. Cambridge,

Mass., & London: Belknap, 1981.

[12] G.-C. Rota. On the Foundations of Combinatorial Theory I: Theory of Möbius Functions,

Z. Warscheinlichkeits-theorie und Verw. Gebiete, 2:340–368, 1964.

[13] A. Silvescu, and V. Honavar. Ontology Elicitation: Structural Abstraction = Structuring

+ Abstraction + Multiple Ontologies. Learning Workshop, Snowbird, Utah, 2003.

[14] J. Yang and V. Honavar. Feature subset selection using a genetic algorithm. In H. Liu and

H. Motoda, editors, Feature extraction, construction and selection, pages 118–135. Kluwer

Academic Publisher, 1998.

www.manaraa.com

16

CHAPTER 2. TEMPORAL BOOLEAN NETWORK MODELS OF

GENETIC NETWORKS AND THEIR INFERENCE FROM GENE

EXPRESSION TIME SERIES

Modified from a paper published in Complex Systems1

Adrian Silvescu2 and Vasant Honavar

Abstract

Identification of genetic regulatory networks and genetic signal transduction pathways from

gene expression data is one of key problems in computational molecular biology. Boolean

networks offer a discrete time Boolean model of gene expression. In this model, each gene can

be in one of two states (on or off) at any given time, and the expression of a given gene at time

t + 1 can be modeled by a Boolean function of the expression of at most k genes at time t.

Typically k << n, where n is total number of genes under consideration. This paper motivates

and introduces a generalization of the Boolean network model to address dependencies among

activity of genes that span for more than one unit of time. The resulting model, called the

Temporal Boolean Network or the TBN(n, k, T) model, allows the expression of each gene

to be controlled by a Boolean function of the expression levels of at most k genes at times

in {t · · · t − (T − 1)}. We apply an adaptation of a popular machine learning algorithm for

decision tree induction for inference of a TBN(n, k, T) network from artificially generated gene
1Reprinted (no permission needed as the copyrights were not transfered) from Complex Systems, 2001,

13(1):54-75.
2Primary researcher and author - designed and implemented the methods, made the theoretical arguments

and wrote the paper.

www.manaraa.com

17

expression data. Preliminary experiments with synthetic gene expression data generated from

known TBN(n, k, T) networks demonstrate the feasibility of this approach. We conclude with

a discussion of some of the limitations of the proposed approach and some directions for further

research.

2.1 Introduction

The central dogma of modern biology states that the functional state of an organism is

determined largely by the pattern of expression of it’s genes. Thus, the function of a cell, how

well a cell performs its function, and even the determination of a cell type is controlled by the

level at which genes are expressed in the cell. Many biological processes of interest (e.g., cel-

lular differentiation during development, aging, disease) are controlled by complex interactions

over time between hundreds of genes. Furthermore, each gene is involved in multiple functions.

Therefore, understanding the nature of complex biological processes such as development, cel-

lular differentiation, carcinogenesis, etc., requires determining the spatio-temporal expression

patterns of thousands of genes, and, more importantly, seeking out the organizing principles

that allow biological processes to function in a coherent manner under different environmental

conditions. Given the fact that thousands of genes are involved in determining the functional

state of an organism, the task of assigning functions to genes, identifying underlying genetic

signalling pathways, genetic control and regulatory networks is a formidable task.

A number of emerging high-throughput technologies are revolutionizing the means by which

genetic signalling pathways involving hundreds of genes can be studied. Many of these tech-

nologies exploit the power of multiplexed data acquisition from addressable solid-state arrays

of biomolecules (BioArrays). Such technologies allow researchers to obtain, in a single experi-

ment, significant amounts of biological information regarding thousands of genes. In order to

determine gene expression levels, messenger RNA samples are collected from a population of

cells under a given set of experimental conditions or at different times during the execution

of a biological pathway or process (e.g., glycolysis [6], cell cycle [26], and development [30]).

Using DNA microarrays, the levels of mRNA expression are measured. Similar methods for

www.manaraa.com

18

determining protein concentrations [8] exist but have a lower throughput.

These advances in data aquisiton make possible, at least in principle, the inference of

models of genetic (regulatory and control) networks from gene expression data. However,

the large number of genes involved, complexity of the pathways, and existence of pleiotropic

and multigenic interactions [24] make this a challenging task. Some issues that arise in genetic

network inference from gene expression data are discussed by Thieffry et al. [28] and Savageau

[23]. Less sophisticated methods such as clustering [7, 3, 30] can also be used in order to analyze

gene expression data but the information that can be obtained by these methods are mainly

restricted to either positive or negative correlations among gene expression patterns.

A variety of formal models for capturing the interactions and functional dependencies in

genetic networks have been proposed in the literature. These include: electrical circuits [17],

Boolean networks [12, 24, 14, 1, 10], Fourier coefficients [11], Bayesian Networks [19], differen-

tial equations [4], Petri nets [9, 16], and Weight matrices [29]. Each of these approaches has its

own strengths and limitations in terms of the following considerations: faithfulness or accuracy

of the model relative to the biological phenomenon being modeled; transparency of the model

(or equivalently, its explanatory value); experimental feasibility (in terms of data requirements)

of model construction, and computational tractability of automated model inference from data.

The focus of this paper is on Boolean Network models of genetic networks wherein each

gene can be in one of two states – ON (expressed) or OFF (not expressed). One of their

main advantages is their comprehensibility due to the transparency of the representation. It is

possible to extend such network models in order to allow for a discrete set of states for each

gene, instead of just two states, or even to allow states that take on real (and hence an infinite)

set of values. Previous work on inference of Boolean models of genetic networks [1, 14] has

focused on data that randomly sample the state transitions typically under the assumption that

the state of a gene at a given time step is influenced by the states of a subset of genes in the

network at the previous time step. Since many experiments involve obtaining gene expression

data by monitoring the expression of genes involved in some biological process (e.g., cell or

neural development) over a period of time, the resulting data is in the form of a time series.

www.manaraa.com

19

In such a setting, it is of interest to understand how the expression of a gene at some stage in

the process is influenced by the expression levels of other genes during the stages of the process

preceding it.

In order to model the temporal dependencies that span several time steps, we introduce

in this paper, a generalization of Boolean Networks called Temporal Boolean Networks. This

will basically transform the Boolean Networks from a Markov(1) to Markov(T) model where

T is the length of the time window during which a gene can influence another gene. We will

demonstrate how Temporal Boolean Networks can be efficiently inferred using an adaptation of

a greedy decision tree learning algorithm [21]. The main contribution of this paper is in terms of

computational techniques for genetic network inference from gene expression time series. The

insights into the nature of functionally significant interactions among genes provided by the

inferred genetic networks might also suggest novel ways to exploit artificial genetic networks to

solve specific computational problems e.g., in evolutionary algorithms.

The rest of the paper is organized as follows: Section 2 provides a brief overview of gene

expression data analysis. Section 3 motivates and introduces the Temporal Boolean model

for genetic networks. In Section 4 we present some theoretical results concerning data-driven

inference of Temporal Boolean Networks from randomly sampled transitions. Section 5 de-

scribes our approach to inferring a Temporal Boolean Network from time series data. Section 6

presents experimental results that demonstrate the feasibility of the proposed approach. Section

7 concludes with a summary and discussion of some directions for further research.

2.2 Gene Expression Data Analysis

The widespread use of DNA microarray and related technologies have led to increased avail-

ability of gene expression data from plants and animals. Consequently, there is a growing need

for sophisticated computational tools for extracting biologically significant information from

gene expression data, assigning functions to genes, and identifying shared genetic signaling

pathways and genetic regulatory networks. The data from a series of m microarray measure-

ments involving n genes can be represented as an m× n gene expression table E where each of

www.manaraa.com

20

the n columns consist of m entries (numbers that correspond to the measured expression levels

of a single gene across m measurements). Thus, the entry eti in row t and column i of the

matrix E denotes the expression level of gene i in the tth measurement. The rows can represent

expression values measured under different experimental conditions, or data obtained by mon-

itoring the expression levels of genes at different times during a biological process (e.g., neural

development). Given this data, a number of different types of analysis are possible [25, 27].

One of the simplest forms of analysis involves clustering of gene expression patterns (columns of

the table) based on some predefined clustering criterion or distance measure, but no knowledge

of the functional classes of the genes. If a subset of expression patterns form a tight cluster, it

can be hypothesized that the genes in question are co-expressed, or even possibly co-regulated.

2.3 Temporal Boolean Networks

In order to model the dependence among the expression levels of the genes we will use a

generalized version of Boolean Networks. The main advantage of these models is their high

level of transparency. In this section we will examine the Boolean Networks model followed by

the discussion of some issues that may arise with respect to this model. The need to address

these issues provides the motivation for generalizing Boolean Networks to the Temporal Boolean

Networks model, which will be defined at the end of this section.

2.3.1 Boolean Networks

Boolean networks, introduced by Kaufmann [12] and explored in [24, 1, 14, 10] offer an

attractive discrete time, boolean model for gene expression. In this model, each gene can be

in one of two states either ON or OFF at any given time. The expression of a given gene at

time t+ 1 is modeled by a Boolean function whose inputs are the expression levels of at most

k genes at time t. Typically k << n, where n is total number of genes under consideration.

We call this family of models BN(n, k) networks. Some of the attractive features of this model

include its conceptual simplicity and transparency as well as the availability of algorithms for

automated inference of the model from expression data.

www.manaraa.com

21

Following Akutsu et al. [1], we are going to give more precise definitions for the boolean

networks. A Boolean Network is specified by pair G(V, F), where the V = {v1, ..., vn} is a

set of nodes representing the genes of the network (one node for each gene) and a list F =

(f1, ..., fn) of Boolean functions. Each node vi has an associated expression value that is either

1 (for expressed) or 0 (for not expressed) that will be denoted also by vi. A boolean function

fi(vi1 , ..., vik) ∈ F with inputs from the specified nodes vi1 , ..., vik is assigned to each node vi.

The nodes vi1 , ..., vik correspond to the genes that influence the expression of the gene associated

with node vi, and fi represent the exact functional dependence of this influence. For example

in Figure 2.1 the gene v2 is influenced by genes v1 and v3 and the functional dependence is

v2 = v1 AND v3. This functional dependence basically says that v2 is expresses if and only if

both v1 and v3 are expressed.

For a subset U ⊆ V , an expression pattern ψ of U is a function from U to {0, 1}. An

expression pattern of V is called a state of a boolean Network. That is ψ represents the states

of nodes (genes), where each node is assumed to take either 0 (not-expressed) or 1 (expressed)

as its state value. Typically, when the usage is clear from the context, we omit ψ. For example,

we write vi = 1 for denoting ψ(vi) = 1. In a Boolean network, the expression pattern ψt+1 at

time t+ 1 is determined by the Boolean functions F from the expression pattern ψt at time t

(i.e. ψt+1(vi) = fi(vi1 , ..., vik)).

For better visualization, it is convenient to consider the wiring diagram [24, 14] G′(V ′, F ′)

of a Boolean network G(V, F) [See Figure 2.1]. For each node vi in V, let vi1 , ..., vik be input

nodes to vi in G(V, F). For each such node vi, we consider an additional node v′i, and we

construct an edge from vij to v′i for each 1 ≤ j ≤ k. Let G′ = (V ′, F ′) the network with nodes

v1, ..., vn, v
′
1, ..., v

′
n constructed in this way. Then the expression pattern of the set {v′1, ..., v′n}

is determined by v′i = fi(vi1 , ..., vik). That is, the expression of pattern {v1, ..., vn} corresponds

to one at a time t and the expression pattern of {v′1, ..., v′n} corresponds to one at time t + 1.

Moreover, it is convenient to consider the expression pattern of {v1, ..., vn} as the INPUT, and

the expression pattern of {v′1, ..., v′n} as the OUTPUT.

The wiring diagram basically shows how the expression levels of genes at time t (INPUT)

www.manaraa.com

22

Figure 2.1 A Boolean Network - from left to right: the network, its wiring
diagram and the functional dependency table. (Akutsu et al.
1999 [1])

influence the the expression levels at time t + 1 (OUTPUT). The exact trasition diagram for

every combination of INPUT values can thus be given by a table as the one in Figure 2.1.

2.3.2 Motivations for Generalizing the Boolean Network Model

Our proposed generalization of the Boolean network model to a Temporal Boolean Network

model is motivated by the following considerations:

• Boolean networks described above are incapable of modeling the existence of latency

periods (lasting more than one unit of time) between the expression of a gene and the

observation of its effect. For example a gene (say g4) whose inhibitory effect (say on gene

g5) depends on an inducer (say g3) first has to bind with this inducer in order to be able

to bind to the inhibition site on g5. Therefore there can be a significant delay between

the expression of the inhibitor gene g4 and its observed effect i.e. the inhibition of the

gene g5.

• Not all variables that can influence the expression level of a gene are necessarily observ-

able. For instance, assume that genes g1, g2, · · · g1000 be the genes under study. Suppose

that the expression of genes g1 at time t might turn on a gene gu at time t+1. It is quite

possible that gu is not among the genes that are being monitored in the experiment, or

even among the genes that are currently known. Suppose gene gu being on at time t+ 1

www.manaraa.com

23

results in a gene g2 being turned on at time t + 2. Since the expression of gu cannot be

observed, the Boolean network model described above will be unable to implicate g1 in

the control of g2.

Note that even if all the genes are monitored in an experiment the unknown factor de-

noted by gu may stand for a non-genetic environmental factor. Also long temporal delays

observed in the our new model might indicate the presence of hidden factors, thus provid-

ing hints for their discovery and therefore contributing to the improvement of the quality

of the data collected in future experiments.

In what follows, we introduce a generalization of the Boolean network model to address depen-

dencies among the activity of genes that span for more than one unit of time. The resulting

model, we will call the TBN(n, k, T) model, allows the expression of each gene at time t + 1

to be controlled by a Boolean function of the expression levels of at most k genes at times in

{t · · · t− (T − 1)}.

2.3.3 Temporal Boolean Networks

In the Temporal Boolean Networks (TBN) we will allow the state of a gene at time t + 1

to depend on the state of other genes at times t, t − 1, ..., t − (T − 1), instead of only t. The

representation of such a network, by analogy with the boolean networks is given in Figure 2.2.

The only change from the Boolean Network model depicted in Figure 2.1 is that the ex-

pression level of gene v2 at time t+ 1 depends on the value of the gene v1 at time t− 1 instead

of time t. This is represented by a label of −1 label on the edge between v1 and v2. By default

the edges are assumed to carry a value of 0, which means that the dependency they represent

is from time t to time t + 1. In general an edge labeled as −k will represent a dependency

between the values at time t−k and t+1. The wiring diagram is changed accordingly in order

to be able to represent dependencies that represent the added functional t − 1 dependencies.

In general, each edge in the network can have a set of labels drawn from the set {0 · · ·T − 1}.

The functional dependency will be represented by a boolean table for each gene, but this time

the inputs can be gene expression values at more than one time step in the past.

www.manaraa.com

24

Figure 2.2 A Temporal Boolean Network

It is straightforward to extend the proposed model to allow for multiple discrete levels

of expression yielding Temporal Discrete Networks TDN(n, k, T,D) wherein each gene can

be expressed at levels 0, 1, · · ·D − 1. Furthermore it is also possible to allow for continuous

expression levels as well yielding TCN(n, k, T,R) wherein the expression level of a gene gi at

time t is a real number in the interval [−R,R].

2.4 Theoretical Results

Identification of a member of the BN(n, k) family from noiseless as well as noisy data have

been explored by Akutsu et al. [1, 2]. They assume that the genes in the (unknown) network

to be inferred can be set to any arbitrary pattern of 0s and 1s and the resulting state at the

next time step can be observed. Further, it is assumed that such “input-output” observations

can be performed by uniformly randomly sampling the inputs. Under similar assumptions, we

can state the corresponding results for TBN(n, k, T) networks.

Theorem 1. O(22k · (2k+α) · log nT) uniformly randomly sampled input patterns and the cor-

responding outputs of an (unknown) TBN τ ∈ TBN(n, k, T) are sufficient to guarantee exact

www.manaraa.com

25

inference of τ with probability at least 1− n−α, where α > 1 is any fixed constant.

The proof of this theorem is a straightforward adaptation of similar results given in Akutsu et

al. 1999 [1] in the case of Boolean networks. [See section 2.8 for additional details].

Note that although the sample and time complexities are exponential in k (the degree

of interaction) they are only logarithmic in nT (the product of the number of genes and the

maximum time span of temporal dependence T). Since typically k << nT , such exact inference

is feasible for small values of k. However, in general, it might be necessary to sacrifice exactness

of inference in exchange for computational efficiency.

It is worth noting that these theoretical guarantees (like their counterparts given by Akutsu

et al. [1, 2]) rely on the assumption that the input patterns constitute a uniformly random

sample and that the output corresponding to each such input can be observed. Since many

experiments involve obtaining gene expression data by monitoring the expression of genes in-

volved in some biological process (e.g., cell or neural development) over a period of time, the

resulting data is in the form of a time series. Since the sequence of states in a time series are

strongly temporally correlated, the assumption of uniform random sampling is no longer valid.

Each such time series provides a trajectory through the state space of a genetic network. Each

trajectory has a transient part which provides useful information about the underlying network

and a steady state part that corresponds to an attractor of the network. Derivation of suit-

able bounds on the number of time series samples (as opposed to uniformly random samples)

by identifying the necessary and sufficient constraints on the temporal structure of the time

series data relative to the structure of the underlying network in this case is a topic of current

research.

In a similar manner as in Akutsu [1] we can develop an information theoretic lower bound

on the number of transitions needed to identify TBN(n,k,T) given by the following theorem:

Theorem 2. At least Ω(2k + k log nT). INPUT/OUTPUT pairs are required in the worst

case to identify a Temporal Boolean Network TBN(n,k,T).

www.manaraa.com

26

Figure 2.3 A decision tree that represents the fact that if genes g2 and g3
are expressed (turned ON) at time t leads to the expression of
gene g1 (turned ON) at time t+ 1

[See section 2.8 for details]. In what follows, we describe an approach to inference of

Temporal Boolean Networks from expression data in the form of a time series.

2.5 Inference of Temporal Boolean Networks from Time Series Data

Temporal Boolean Networks model functional dependencies among genes using Boolean func-

tions. Boolean functions have several alternative representations. The simplest (and the most

explicit) representation is a truth table shown in Fig. 1. However, functions that correspond to

descriptions of natural phenomena typically lend themselves to more compact representations

in the Conjunctive Normal Form (CNF), Disjunctive Normal Form (DNF), or in the form of

decision trees, decision lists, etc. We have chosen to represent the Boolean functions used to

describe Temporal Boolean Networks in the form of Decision Trees.

For example, consider gene g1 that is induced by a complex formed from the products of

www.manaraa.com

27

two genes g2 and g3 and these are the only gene that influence g1. A decision tree that describes

this dependence is given in Figure 2.3. Similarly, for each gene we can construct such a decision

tree. The genes that control gene gi’s expression appear as nodes in its corresponding decision

tree.

Since every k-input boolean function can be represented by a decision tree of depth at most

k, we can ensures that the resulting representation is expressive enough to describe any member

of the Temporal Boolean Network family TBN(n, k, T). We use n decision trees, one for each

gene, to collectively describe a Temporal Boolean Network model of a genetic network. The

output of each decision tree represents the expression level (0 or 1) of the corresponding gene

based on at most k expression levels over a time window of length at most T .

Several algorithms for inferring decision trees from data (in the form of sample input-

output pairs) are available in the machine learning literature. The ID3 [21] algorithm and its

variants are based on a greedy search through the space of decision trees in order to identify a

compact decision tree that adequately models the observed data and (under some reasonable

assumptions) has high predictive accuracy on unobserved data. This search for a compact tree,

guided by the entropy reduction (or information gain) criterion corresponds to a greedy version

of the approach used in REVEAL [14]. Greedy search makes this approach computationally

tractable for large genetic networks. A large body of empirical results in the machine learning

literature suggest that the decision trees inferred by greedy search compare favorably with

those inferred using exhaustive search in terms of predictive accuracy. Hence, we used a greedy

search guided by information gain, over the space of depth k decision trees.

The training data for a decision tree modeling the functional dependency of the level the

expression of gene gi consists of observed input output pairs where each input is a nT bit

boolean vector encoding the activities of each of the n genes at times t, t−1, t−2 · · · t− (T −1)

and the corresponding output is the observed expression level of gi at time t + 1. For a given

gene gi, m− T input–output samples (or training examples) are obtained by sliding a window

of length T (where T < m) over the rows of a gene expression time series E (See section 2).

Thus, an m×n gene expression matrix yields m−T training samples for each of the n decision

www.manaraa.com

28

trees. Examples obtained from multiple time series are used for inferring a genetic network.

2.6 Experimental Setting and Results

The experiments described in this section were designed to explore the performance of

the proposed approach to genetic network inference on randomly generated temporal boolean

networks. In generating a network, we assume that the probability that the expression level of

a gene at time t+ 1 depends on the expression levels of genes at time t− δ is proportional to

ζδ ∀t such that 0 ≤ t ≤ T − 1 for some choice of ζ where 0 < ζ ≤ 1. For each network, we

generated 20 time series of length 100, by setting the expression levels over a window of length

T to random values and recording network’s outputs over 100 time steps. Thus, each time

series resulted in an n× (100 + T) boolean matrix E . The 20 time series collectively provided

100 × 20 training examples for each of the n genes. Each time point contains the expression

levels for all genes at that moment of time. A decision tree was inferred for each gene.

Then we evaluated the results in terms of the sensitivity, specificity and accuracy of the

inferred decision tree DTi with respect to the corresponding temporal boolean network TBNi

for each gene gi.

We denote the fact that the decision tree DTi captures the dependence of the expression

level of gene gi at time (t+ 1) on the expression level of the gene gene gj at time (t− τ) where

τ ∈ {0, · · · , (T−1)}, by writing (τ, j) ∈ DTi. Similarly, we denote the fact that the expression

level of gene gi at time (t+ 1) depends on the expression level of gene gj at time (t− τ) if gene

gi were controlled by the temporal boolean network TBNi by writing (τ, j) ∈ TBNi. Let

DEPDTi = {(τ, j)|(τ, j) ∈ DTi}

Let

DEPTBNi = {(τ, j)|(τ, j) ∈ TBNi}

Then the sensitivity of the decision tree DTi for gene gi is defined as follows:

sensitivity(i) =
|DEPTBNi ∩DEPDTi |

|DEPTBNi |

www.manaraa.com

29

The sensitivity of the inferred decision tree measures the degree, to which this tree succeeds in

capturing the dependency of gene gi on other genes, with respect to the true Temporal Boolean

Network.

The sensitivity of the inferred set of decision trees DT = {DTi|i ∈ {1, · · · , n}} relative to

the corresponding TBN is given by:

sensitivity(DT, TBN) =
1
n

n∑
i=1

sensitivity(i)

The specificity of the decision tree inferred for gene gi is defined as follows:

specificity(i) =
|DEPTBNi ∩DEPDTi |

|DEPDTi |

Specificity of the inferred decision tree measures the degree to which it misleads us regarding

the dependency of gene gi on the various genes in the genetic network.

The specificity of the inferred set of decision trees DT = {DTi|i ∈ {1, · · · , n}} relative to

the corresponding TBN is given by:

specificity(DT, TBN) =
1
n

n∑
i=1

specificity(i)

The accuracy of the decision tree inferred for gene gi is defined to reflect the degree to which

it correctly predicts the expression level of gene gi (as estimated from a set of gene expression

time series data).

Let Λ be a set of gene expression time series used to evaluate the accuracy of a decision

tree inferred for gene gi.

Then we will denote by accuracy (i, λ) the accuracy of the tree for gene gi on a time series

λ ∈ Λ. accuracy(i, λ) represents the fraction of expression levels of gene gi from the time

series λ that are correctly predicted by the inferred decision tree DTi, relative to the total

size of λ. Thus, if λ is a time series of length 100, and at 80 of the 100 time points, the

expression level of gene gi predicted by DTi agrees with the corresponding values observed in

λ, accuracy(i, λ) = 0.8. The accuracy of DTi is estimated as follows:

accuracy(i) =
1
|Λ|

∑
λ∈Λ

accuracy(i, λ)

www.manaraa.com

30

Accuracy
Specificity
Sensitivity

k

1098765432

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

1

Figure 2.4 Effect of varying k on inference of a boolean net with 16 genes
(n = 16) and T = 3.

The accuracy of an inferred decision tree DTi was estimated using an independently gener-

ated test set of 20 time series each of length 100 generated from TBNi. The estimated accuracy

of the inferred set of decision trees DT = {DTi|i ∈ {1, · · · , n}} relative to the corresponding

TBN is given by:

accuracy(DT, TBN) =
1
n

n∑
i=1

accuracy(i)

Each experiment consisted of 10 independent runs of this procedure (each with a new

randomly generated network) and the results presented show averages over these runs.

The first experiment presented in Figure 2.4 shows the effect of varying k on the sensitivity,

specificity, and accuracy of inference of a boolean network with 16 genes, with T = 3 as k is

varied from 2 to 10. Similar results were obtained for networks with 32 genes. The experiment

shows that the sensitivity increases as the degree of interaction k increases.

The second experiment presented in Figure 2.5 explores the effectiveness of the inference

algorithm when multiple levels of expression are allowed for each gene. This experiment involved

inference of a 4-ary network with 16 (n = 16) genes, T = 3 as k is varied from 2 to 10. This

corresponds to a Temporal Discrete Network TDN (n=16, k=2-10, T=3, D=4). In this case we

observe sensitivity and specificity increasing and accuracy decreasing with increase in k. These

www.manaraa.com

31

Accuracy
Specificity
Sensitivity

k

8765432

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

1

Figure 2.5 Effect of varying k on inference of a 4-ary network with 16 genes
(n = 16) and T = 3.

Accuracy
Specificity
Sensitivity

T

87654321

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

1

Figure 2.6 Effect of varying T on inference of a boolean net with 16 genes
(n = 16) and T = 3.

www.manaraa.com

32

experiments show that as we increase the complexity of the model (in this case the number of

expression levels) the sensitivity, which represents the probability that we will identify genes

that represent the true dependency, increases (compare the Sensitivities in Figure 2.4 and

Figure 2.5).

Further experiments revealed that the reduction in accuracy can be explained by the ne-

cessity for additional data as k increases, in the conditions of a 4-ary network were for each

gene we have to disambiguate among 44k 4-ary functions versus 22k in the 2-ary (Boolean) case

(once the dependencies are known qualitatively).

The third experiment presented in Figure 2.6 explores the effect of varying T on the perfor-

mance of the inference algorithm. In this case, we see that for a boolean network with n = 16

genes, k = 6 the sensitivity, specificity, and accuracy vary little across different values of T

(from T = 1 to T = 8).

2.7 Summary and Discussion

This paper introduced the Temporal Boolean Networks (and Temporal Discrete Networks)

which generalize the Boolean Network model in order to cope with dependencies that span over

more than one unit of time. Some bounds on the size of data needed to infer Temporal Boolean

Networks from time series data under uniformly random sampling assumptions are stated. We

also showed how the problem of Temporal Boolean Network inference can be translated into a

problem of inferring a set of decision trees. We demonstrated, through a series of experiments

using artificially generated networks, the effectiveness of a simple and fast decision tree inference

algorithm for inferring Temporal Boolean Networks and Temporal Discrete Networks from time

series data.

The main hindrance against applying the TBN inference algorithm on real data is the lack

of sufficiently large data sets. This hindrance is likely to become less serious as additional data

are gathered.

The approaches to genetic network inference from gene expression data rely on the assump-

tion that only the expression of a gene is likely to be controlled by a relatively small number

www.manaraa.com

33

(say k) of genes. Biologically meaningful value of k is currently unknown, but is believed to

be much smaller than the total number of genes n [12]. It is clear from the sample complexity

results presented in this paper that purely data-driven approaches to inference of temporal

boolean networks will be computationally infeasible unless k << n.

Work in progress is aimed at evaluating the effectiveness of the described approach for

inferring genetic networks from biological gene expression time series data.

Some directions for future work include investigation of variations of the model to accommo-

date probabilistic Boolean and Discrete valued functional dependencies, and continuous valued

expression levels as well as alternative (e.g., event-based and interval-based) representations

of time. Investigation of techniques for incorporating prior knowledge (in the form of known

biological constraints) into the inference algorithm represents another direction for futire re-

search. Also of interest are active learning approaches wherein the learning algorithm helps

identify promising experiments as opposed to the purely data-driven passive learning approach

examined in this paper.

2.8 Proof of Theoretical Results

Theorem 1. O(22k · (2k + α) · log nT) uniformly randomly sampled input patterns and the

corresponding outputs of an (unknown) TBN τ ∈ TBN(n, k, T) are sufficient to guarantee

exact inference of τ with probability at least 1− n−α, where α > 1 is any fixed constant.

Proof Sketch: The proof of this theorem is an adaptation of the corresponding theorem

proved in [1] in the case of Boolean Networks. The proof in [1] is based on a brute-force

algorithm for identifying a boolean function from the set of all boolean functions with less

than k inputs chosen from a set of n possibilities (i.e., roughly 22k · nk functions). A precise

characterisation can be given to a minimal set of INPUT/OUTPUT pairs that will allow the

algorithm to identify(in the worst case) a Boolean Network exactly. Then the bound stated by

the theorem (i.e., O(22k · (2k + α) · log nT)) is derived as the number of uniformly random

sampled INPUT/OUTPUT pairs needed, in order to be sure that our sample will contain the

minimal set with probability at least 1− n−α.

www.manaraa.com

34

The only difference in the case of Temporal Boolean Networks is that we have to do the

identification from the set of all boolean functions with less than k inputs chosen from a set

of nT possibilities (i.e., roughly 22k · (nT)k functions). Aside from this the proof follows along

the same lines as the one in [1].

�

Theorem 2. At least Ω(2k + k log nT) INPUT/OUTPUT pairs are required in the worst case

to identify a Temporal Boolean Network TBN(n,k,T).

Proof Sketch: The proof for this theorem follows from a standard information theoretic

argument.

The general problem in the information theoretic setting is the following: “We want to

identify an element e, from a set S of finite cardinality |S|, by asking D-ary questions (i.e.

that have D possible answers) about where in the set S the element e to be found. And the

problem is to find what is the minimum number of D-ary questions that we need in the worst

case in order to identify the element e." The solution to this problem is as follows: “We need at

least Ω(logD |S|) questions in order to identify the element e. This is because a D-ary question

splits the set S into D subsets and at least one of these sets has a size of at least |S|/D. If we

iterate this procedure for l succesive questions then we get that the size of at least one of the

subsets has to be at least |S|/Dl. By setting this size equal to 1 (in order to obtain a 100%

identification of e) and solving the equation we obtain a minimum of Ω(logD |S|) questions

needed for the identification of e".

Returning to our problem, if we are to recast it in information theoretic terms, the element

that we want to identify is a TBN from the set of all possible TBNs of the type (n, k, T)

(i.e., having n genes, dependency of at most k, and having a dependency timespan of at most

T). The questions in our case are the INPUTs (which are n × T matrices that represent

the levels of expression for all n genes during the previous T timesteps) and the answers to

these questions are represented by the OUTPUTs (which are the levels of expression for all of

the n genes at the current moment of time). Therefore in our case an INPUT/OUTPUT is

equivalent to an answer to a 2n-ary question (because there are 2n possible OUTPUT patterns,

www.manaraa.com

35

hence 2n possible answers). The number of TBNs of the type (n, k, T) is given by all the

possible combinations of n(one for each gene) boolean functions with k inputs chosen from n ·T

possibilities. Since there are 22k possible Boolean functions with k inputs and Ω((nT)k) ways

to chose those k inputs from n · T possibilities, it follows that there are Ω((22k · (n · T)k)n)

possible TBNs of type (n,k,T). Now applying the information theoretic argument it follows that

we need Ω(log2n(22k · (n ·T)k)n) questions. But this is the same as Ω(2k + k log2 nT) (because

logan bn = loga b). Which completes the proof.

�

Note: The previous theorem can be generalized also for the case when we have D-ary

Temporal Networks by replacing 2 in all the places with D (including the base of the logarithm).

2.9 PostScript

Due to to their simplicity and easiness in interpretation models of the Temporal Boolean

Networks sort prove to be a useful model especially the field of Genetic Regulatory Network

modeling and inference where massive amounts of data are not available in order to fit more

sophisticated models. Since the publication of the original paper additional developments in

this the vein of temporal modeling of Genetic Regulatory Networks and Temporal Boolean

Networks have been done by other researchers [5][13][15][20].

Bibliography

[1] T. Akutsu, S. Miyano, and S. Kuhara, “Identification of Genetic Networks from a Small

Number of Gene Expression Patterns Under the Boolean Network Model", Pacific Sym-

posium on Biocomputing, 4:17-28, 1999.

[2] T. Akutsu, S. Miyano and S.Kuhara. Algorithms for Inferring Qualitative Models of Bio-

logical Networks. Pacific Symposium on Biocomputing, 5:290-301, 2000.

[3] A. Ben-Dor and Z. Yakhini. Clustering Gene Expression Patterns. Journal of Computa-

tional Biology, 6:281-297, 1999.

www.manaraa.com

36

[4] T. Chen, H. L. He, and G.M. Church. Modeling Gene Expression with Differential Equa-

tions. Pacific Symposium on Biocomputing, 4:29-40, 1999.

[5] C. Cotta, and J. M. Troya. Reverse engineering of temporal Boolean networks from noisy

data using evolutionary algorithms. Neurocomputing, 62:111-129, 2004.

[6] J. L. DeRisi, V. R. Iyer and P. O. Brown. Exploring the metabolic and genetic control of

gene expression on a genomic scale. Science, 278(5338):680-6, 1997.

[7] M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster analysis and display of genome-

wide expression patterns. Proceedings of the National Academy of Science, 95:14863-14868,

1998.

[8] S. P. Gygi, Y. Rochon, B. R. Franza, R. Aebersold. Correlation between protein and

mRNA abundance in yeast. Mollecular Biology of the Cell, 19:1720-30, 1999.

[9] P.J.E. Goss and J. Peccoud. Quantitative modeling of stochastic systems in molecular

biology by using stochastic Petri Nets. PNAS, 95:6750-6755, 1998.

[10] T.E. Ideker, V. Thorsson, and R.M. Karp. Discovery of Regulatory Interactions Through

Perturbation: Inference and Experimental Design. Pacific Symposium on Biocomputing,

5:302-313, 2000.

[11] H. Kargupta. A striking property of genetic code-like transformations, Technical Report

EECS-99-004, Department of Electrical Engineering and Computer Science, Washington

State University, 1999.

[12] S.A. Kauffmann. The Origins of Order, Self-Organization and Selection in Evolution. Ox-

ford University Press, 1993.

[13] X. Li, S. Rao, W. Jiang, C. Li, Y. Xiao, Z. Guo, Q. Zhang, L. Wang, L. Du, J. Li, L. Li,

T. Zhang, and Q. K. Wang. Discovery of time-delayed gene regulatory networks based on

temporal gene expression profiling, BMC Bioinformatics, 7: 26, 2006.

www.manaraa.com

37

[14] S. Liang, S. Fuhrman and R. Somogyi. REVEAL, A General Reverse Engineering Algo-

rithm for Inference of Genetic Network Architectures. Pacific Symposium on Biocomputing,

3:18-29, 1998.

[15] M.T. Matache, and J. Heidel. Random Boolean network model exhibiting deterministic

chaos. Phys. Rev. E, 69(5):56214-56224, 2004.

[16] H. Matsuno, A. Doi, M. Nagasaki and S. Miyano. Hybrid Petri Net Representation of Gene

Regulatory Network. Pacific Symposium on Biocomputing, 5:338-349, 2000.

[17] H.H. McAdams and L. Shapiro. Circuit Simulation of Genetic Networks. Science, 269:650-

656, 1995.

[18] G.S. Michaels, D.B. Carr, M. Askenazi, S. Fuhrman, X. Wen and R. Somogyi. Cluster

Analysis and Data Visualization of Large-Scale Gene Expression Data. Pacific Symposium

on Biocomputing, 3:42-53, 1998.

[19] K. Murphy and S. Mian. Modelling gene expression data using dynamic Bayesian networks,

Technical report, Computer Science Division, University of California, Berkeley, CA, 1999.

[20] H. Oktem, , R. Pearson, and K. Egiazarian. An adjustable aperiodic model class of genomic

interactions using continuous time Boolean networks (Boolean delay equations). Chaos

13:1167–1174, 2003.

[21] J.R. Quinlan, Induction of decision tree. Machine Learning, 1(1):81–106, 1986.

[22] J.R. Quinlan. Rule induction with statistical data - a comparison with multiple regression.

Journal of the Operational Research Society, 38:347-352, 1987.

[23] M.A. Savageau. Rules for the Evolution of Gene Circuitry. Pacific Symposium on Biocom-

puting, 3:54-65, 1998.

[24] R. Somogyi and C.A. Sniegoski. Modeling the complexity of genetic Networks: Under-

standing Multigenic and Pleitropic Regulation. Complexity 1(6):45-63, 1996.

www.manaraa.com

38

[25] R. Somogyi, H. Kitano, S. Miyano, and Q. Zheng. Molecular Network Modelling and Data

Analysis. Session Introduction - Pacific Symposium on Biocomputing, 5:288-289, 2000.

[26] P. T. Spellman et al. Comprehensive Identification of Cell-Cycle regulated Genes of the

Yeast Saccharomyces Cervisiae by MicroArray Hybridization. Molecular Biology of the

Cell, 9:3273-97, 1998.

[27] G. Stormo. Identification of Coordinated Gene Expression and Regulatory Sequences. Ses-

sion Introduction - Pacific Symposium on Biocomputing, 5:413-414, 2000.

[28] D. Thieffry and R. Thomas. Qualitative Analysis of Gene Networks. Pacific Symposium

on Biocomputing, 3:77-88, 1998.

[29] D.C. Weaver, C.T. Workman, and G.D. Stormo. Modeling Regulatory Networks with

Weight Matrices. Pacific Symposium on Biocomputing, 4:112-123, 1999.

[30] X. Wen, et al. Large-scale temporal gene expression mapping of central nervous system

development. Proceedings of the National Academy of Science, 95:334-9, 1998.

www.manaraa.com

39

CHAPTER 3. LEARNING CLASSIFIERS FOR ASSIGNING PROTEIN

SEQUENCES TO GENE ONTOLOGY FUNCTIONAL FAMILIES.

Modified from a paper published in the Proceddings of the Fifth International Conference on

Knowledge Based Computer Systems1

Carson Andorf2, Adrian Silvescu3, Drena Dobbs and Vasant Honavar

Abstract

Assigning putative functions to novel proteins and the discovery of sequence correlates of

protein function are important challenges in bioinformatics. In this paper, we explore sev-

eral machine learning approaches to data-driven construction of classifiers for assigning protein

sequences to appropriate Gene Ontology (GO) function families using a class conditional prob-

abilistic representation of amino acid sequences. Specifically, we represent protein sequences

using class conditional probability distribution of amino acids (amino acid composition) or

short (k-letter) subsequences (k-grams) of amino acids. We compare a model (NB k-grams)

that ignores the statistical dependencies among overlapping k-grams with an alternative, NB(k),

that uses an undirected probabilistic graphical model that captures the relevant dependencies.

These two methods require only one pass through the training data during the learning phase,

making them especially attractive in settings where there is a need to update the classifiers as
1Reprinted (no permission needed as the copyrights were not transfered) from the Proceddings of the Fifth

International Conference on Knowledge Based Computer Systems (KBCS 2004). India. 2004.
2Primary researcher and author - implemented the experimental setup, performed the experiments and wrote

their description.
3Primary researcher and author - proposed and designed the method, experimental validation and made and

wrote the theoretical arguments.

www.manaraa.com

40

new training data become available. We also explore a support vector machine (SVM) classifier,

SVM k-grams, trained on the k-gram class conditional probability distributions of sequences.

We report the performance of the resulting classifiers on three data sets of functional families

from the Gene Ontology (GO) database. Our results show that the NB(k) classifier outperforms

NB k-grams in terms of accuracy of classification (as measured by cross-validation) by a few

percentage points. SVM k-grams outperforms NB(k) in the majority of test cases. These results

suggest the possibility of developing fully automated and computationally efficient approaches

to construction of classifiers based on undirected graphical models of overlapping k-grams that

can be easily updated as additional training data become available. Our results also show that

further gains in accuracy of the classifiers are achievable (at the expense of increased computa-

tional demands and hence greater difficulty of frequent updates to the classifier as new training

data become available) using SVM k-grams.

3.1 Introduction

Proteins are the principal catalytic agents, structural elements, signal transmitters, trans-

porters and molecular machines in cells. Experimental determination of protein structure and

function significantly lags behind the rate of growth of protein sequence databases. This situa-

tion is likely to continue for the foreseeable future. Hence, assigning proteins putative functions

from sequences alone remains one of the most challenging problems in functional genomics [12].

Improvements in annotating protein sequences [19] can be expected to yield significant improve-

ments in gene annotations. One class of sequence-based approaches relies on the comparison

of the sequence in question to other sequences in a database of sequences with known function.

Functional assignment is made by transference of function whenever sequences are sufficiently

similar. A commonly employed notion of similarity is based on estimated sequence homology

with programs such as BLAST and its derivatives [1]. Sequence searches often return mul-

tiple hits, so significant human expertise is needed for interpreting results. The reliability of

homo-logs detected by multiple sequence alignment rapidly drops once the pair-wise sequence

identity drops below 30 percent [19]. A second class of sequence-based approaches for assign-

www.manaraa.com

41

ing putative functions to protein sequences rely on the detection of sequence patterns (Several

automated tools for identifying conserved sequence patterns from a given set of sequences e.g.,

e-Motif and e-Matrix [15], [7], MEME [5] are available.) Motif databases can be queried using

a protein sequence to obtain a list of conserved sequence patterns found in the sequence as well

as functions associated with the respective patterns. The results can be used to assign putative

functions to the protein sequence. In the case of protein families having sufficient numbers of

well-characterized members, data mining approaches rooted in statistical inference and machine

learning [6] offer an attractive and cost-effective approach to automated construction of clas-

sifiers for assigning putative functions to novel protein sequences. In essence, the data mining

approach uses a representative training data set that encodes information about proteins with

known functions to build a classifier for assigning proteins to one of the functional families

represented in the training set (and if necessary, a default class indicating unknown function).

The resulting classifier can then be used to assign novel protein sequences to one of the protein

families represented in the training set after it has been validated using an independent test set

(which was not used to build the classifier). Recent work by our group [22], [2] has explored

the use of machine learning approaches to automated construction of such classifiers.

In this paper, we explore methods that use class conditional probabilities of k-grams (k-

letter sub-sequences) [10] to represent amino acid sequences.

The first method uses a Naive Bayes classifier which treats each amino acid sequence as if

it were simply a bag of amino acids.

The second method (NB k-grams) applies the Naive Bayes classifier to a bag of k-grams

(k > 1). Note that NB k-grams violates the Naive Bayes assumption of independence in an

obvious fashion: neighboring k-grams overlap along the sequence, adjacent k-grams have k-1

elements in common.

Our third method overcomes this problem by constructing an undirected graphical proba-

bilistic model for k-grams, which explicitly models the dependencies among overlapping k-grams

in a sequence - NB(k). This method will adequately discount the contributions of the overlaps.

We train one model per functional family. During classification, just as in the case of the

www.manaraa.com

42

Naive Bayes classifier, the sequence to be classified is assigned to the class that has the largest

posterior probability given the sequence. We call the resulting classifier NB(k) to denote the

fact that it models dependencies among k adjacent elements of sequences. Note that NB(1) is

equivalent to NB 1-grams, which in turn is equivalent to the Naive Bayes classifier.

Our fourth method applies a support vector machine (SVM) [9], [21] to classify amino acid

sequences represented using class conditional probability distributions of k-grams in the se-

quence. SVM-s have recently been applied successfully to many problems in computational

biology including protein function classification [16] and identification of protein-protein inter-

action sites from sequences [23]. However, to the best of our knowledge, previous work using

SVM has not utilized a class conditional k gram probability-based representation of amino acid

sequences.

While SVM-s, unlike NB(k) and NB k-grams classifiers, do not have the advantage of

training with only one pass through the training data, they are attractive in scenarios where

higher accuracy of classification than that achievable by algorithms that make a single pass

through the training data is desired. This increased accuracy comes at the expense of increased

computational requirements - especially in cases where it is necessary to update the classifiers

frequently as new training data become available. On a large data set a SVM classifier may

take days to construct while NB(k) and NB k-grams can build a classifier in minutes. Hence,

we explore an SVM that uses as input a k-gram class conditional probability distribution

associated with the protein sequence to be classified. We call this fourth method SVM k-

grams. This method is comparable to work using SVM-s to predict sub-cellular localization

based on amino acids [14], [8]. Their research focused on using mono-peptide and di-peptide

composition. We consider larger ordered polypeptide composition in our study.

We compare NB k-grams, NB(k) SVM k-grams classifiers for assigning protein sequences

to the corresponding GO (the Gene Ontology [13]) taxonomy of protein functional families.

The sequence data sets used in our experiments were extracted from SWISSPROT [4]. In

our experiments, the NB k-gram classifier outperformed (in terms of classification accuracy),

the standard Naive Bayes classifier by a large margin; the NB(k) classifier outperformed NB

www.manaraa.com

43

1. For each class cj train the probabilistic model M(cj) of type M using the sequences that
belong to the class cj .

2. Predict the class of the sequence class(S̄) of a novel sequence S as:

class(S) = arg max
cj∈C

PM(cj)(S̄)P (cj)

Algorithm 4 Classification using a Probabilistic Model

k-grams classifier by a few percentage points, and SVM k grams outperformed NB(k) in the

majority of the test cases.

3.2 Method

In this section we outline the two probabilistic models we use for modeling the interactions

among k consecutive elements in the sequence. First, we define a method to build a classifier

associated with a probabilistic model.

3.2.1 Classification using a Probabilistic Model

Notations: Let Σ be a finite set called alphabet (which in our case is the 20-letter amino

acid alphabet). We will denote a sequence of elements from Σ∗ with S, the i-th element of

the sequence by Si and the value of the i-th element in the sequence by si. We will write

a sequence of length n as S = [S1 = s1, ..., Sn = sn]. Let C = {cj}j=1,m be a finite set of

(mutually exclusive) class labels for sequences.

A probabilistic model M for sequences defined over the alphabet Σ is any function that

specifies a probability PM (S = [S1 = s1, ..., Sn = sn]) for every sequence S̄ ∈ Σ∗. Given a

model M(cj) of the type M for each class cj ∈ C we define PM(cj)(S̄) := PM (S̄|cj) (that is the

probability of that the sequence S̄ appears in class cj , according to a model of type M for each

class: PM (S̄|cj)). Given such a probabilistic model M we can produce a classification scheme

as follows:

www.manaraa.com

44

Note that since PM(cj)(S̄) := PM (S̄|cj) the class prediction can also be written:

class(S) = arg max
cj∈C

PM (S̄|cj)P (cj)

To summarize: given that such a probabilistic model is established, we can then produce a

classifier using the scheme outlined above in Algorithm 4.

3.2.2 Naive Bayes Classifier - NB

In the case when the probabilistic model form the previous section assumes independence

among the occurrences of each symbol in the sequence S̄ given the class label we obtain the

Naive Bayes Classifier.

Naive Bayes Classifier - NB:

class(S) = arg max
cj∈C

PNB(S̄ = [S1 = s1, ..., Sn = sn]|cj)P (cj)

= arg max
cj∈C

n∏
i=1

P (Si = si|cj)P (cj)

Where the second line follows from the independence assumption, which in the absence of

a class is:

PNB(S̄ = [S1 = s1, ..., Sn = sn]) =
n∏

i=1

P (Si = si)

The Naive Bayes classifier is a particular example of the previously outlined general scheme

for producing a classifier from a given probabilistic model M for the input data (sequence in

our case).

Since the elements in a sequence are seldom independent next we will examine models that

attempt to capture interactions among the elements in the sequence. More exactly we will try

to model the direct interactions among k consecutive elements.

3.2.3 Naive Bayes k-grams

The Naive Bayes k-grams (NB k-grams) method uses a sliding a window of size k along each

sequence to generate a bag of k-grams representation of the sequence. Much like in the case

www.manaraa.com

45

S1 S2 S3 S4 S5a)

S1 S2 S3 S4 S5b)

S1 S2 S3 S4 S5c)

Figure 3.1 Graphical depiction of the dependence between the elements in
a sequence of five elements: a) independence model (yields the
Naive Bayes classifier); b) pairwise dependence; and c) 3-wise
dependence.

of the Naive Bayes classifier described above treats each k-gram in the bag to be independent

of the others given the class label for the sequence. The classification scheme associated with

Naïve Bayes k-grams is:

class(S̄) = arg max
cj∈C

n−k+1∏
i=1

P (Si = si, ..., Si+k−1 = si+k−1|cj)P (cj)

A problem with the NB k-grams approach is that successive k-grams extracted from a

sequence share k − 1 elements in common. This grossly and systematically violates the inde-

pendence assumption of Naive Bayes. A systematic way to deal with this problem is presented

next.

3.2.4 Naive Bayes (k)

We introduce the Naive Bayes (k) or the NB(k) model [20] to explicitly model the depen-

dencies that arise as a consequence of the overlap between successive k-grams in a sequence.

We represent the dependencies in a graphical form by drawing edges between the elements that

are directly dependent on each other (Figure 3.1).

As a consequence of the Junction Tree Theorem for Decomposable Undirected Graphical

www.manaraa.com

46

Models [11], the correct probability model that captures the dependencies among overlapping

k-grams is given by:

P (S = [S1 = s1, ..., Sn = sn]) =
∏n−k+1

i=1 P (Si = si, ..., Si+k−1 = si+k−1)∏n−k+1
i=2 P (Si = si, ..., Si+k−2 = si+k−2)

(3.1)

Now, given this probabilistic model, we can use the standard approach to classification given

a probabilistic model outlined above. It is easily seen that when k = 1, Naive Bayes 1-grams as

well as Naive Bayes (1) reduce to the Naive Bayes model. The relevant probabilities required

for specifying the above models can be estimated using standard techniques for estimation of

probabilities using Laplace estimators [17].

3.2.5 On Naive Bayes k-gram vs. NB(k)

One intuitive way to try to think about the Naive Bayes k-grams case is a attempting to

specify a probabilistic model by taking the product of the marginals of the directly dependent

nodes as follows:

P (S = [S1 = s1, ..., Sn = sn]) ? =
n−k+1∏

i=1

P (Si = si, Si+k−1 = si+k−1)

And if we are to plug this formula into our scheme for producing classifiers outlined pre-

viously we will obtain Naive Bayes k-grams. The only problem with this is that the right

hand side is not a probability distribution (hence the question mark before the equality sign)

- because the probabilities do not add up to 1 but to a smaller number as not all the possible

combinations of k-grams are possible (e.g., if the first 2-gram is ab then the second (overlap-

ping) k-gram cannot be an arbitrary one but must start with a b). Another intuition behind it

is that we are somehow “double counting” or more exactly “double multiplying” the influence

of some of the nodes namely: S2 = s2, ..., Sn−1 = sn−1. For example S2 = s2 appears both

in P (S1 = s1, S2 = s2) and P (S2 = s2, S3 = s3). Note that because the probabilities are

numbers less than 1 and therefor “double multiplying” makes the numbers smaller, which in

turn makes us the probabilities undershoot the 1 target unlike “double counting” which usually

makes the numbers bigger and which make us overshoot the target. NB(k) is the right way to

www.manaraa.com

47

“fix” this problem and it yields a probabilistic model (i.e., the probabilities add up to 1) and

is the Decomposable Undirected Graphical Model that accurately represents the k-way direct

dependencies depicted in Figure 3.1 as follows from the Junction Tree Theorem [11].

3.2.6 SVM k-grams

Note that the NB(k) algorithm was developed because NB k-grams systematically violates

the independence assumption of Naïve Bayes. Against this background, it is of interest to

consider other methods that can utilize class conditional k-gram frequencies without relying on

the independence assumptions made by NB k-grams and without the need for explicit modeling

of dependencies as in the case of NB(k). Hence, we consider a Support Vector Machine (SVM)

classifier which accepts as input, a class conditional k-gram probability distribution for the

protein (which is same as the one used by NB k-grams model) and outputs a class label. In

this method, the SVM classifier can be seen as a second stage of a 2-stage classifier. The inputs

to the SVM are supplied by the NB k-grams model.

3.3 Experimental setup and results

We compare the performance of the four classifiers - NB (= NB 1-gram = NB(1)), NB

k-grams, NB(k) and SVM k-grams on three protein function classification data sets.

Data Sets: The data sets used in this study are constructed as follows: First, a set of

functional classes are chosen from the GO taxonomy of protein functional families. Then, the

corresponding sequences are retrieved from the SWISSPROT data-base [4]. Because the GO

taxonomy has the form of a directed acyclic graph, and many proteins are multifunctional, it is

possible that a given protein belongs to multiple functional families. Hence, the resulting data

set is filtered to remove proteins that had multiple GO class labels to ensure that the classes

are non overlapping (i.e.., mutually disjoint) - a requirement of most standard machine learning

and statistical methods for classification including the methods considered in this paper. (The

development of principled approaches to classification of data that are labeled with multiple

class labels is largely an open problem in machine learning).

www.manaraa.com

48

The first data set was derived from families of yeast and human kinases. These families were

chosen for this study because many of them are well-characterized, with known structures and

functions. The data set used in this study consisted of 396 proteins belonging to the Gene Ontol-

ogy functional family GO0004672, Protein Kinase Activity. We classified them according to the

highest level below GO0004672. This consists of 5 groups. In GO, their labels are GO0004672,

Protein Kinase Activity (102 proteins); GO0004674, protein serine/threonine kinase activity

(209 proteins); GO0004713, protein-tyrosine kinase activity (69 proteins); GO0004712, protein

threonine/tyrosine kinase activity (10 proteins); and GO0004716, receptor signaling protein

tyrosine kinase activity (6 proteins).

The second data set is derived from two subfamilies of GO0003824, Catalytic Activity.

This division is at a higher level of GO then the previous data set and consists of 376 proteins

belonging to the Gene Ontology functional family GO0004672, Protein Kinase Activity (158

proteins) and GO001684, Protein Ligase Activity (218 proteins).

The third data set is a super-set of data set two. It contains the Kinase data and Ligate

data in addition to two other subfamilies of GO0003824, Catalytic Activity. These families

are GO0004386, Protein Helicase Activity (110 proteins), and GO0016853, Protein Isomerase

Activity (86 proteins). This data set tests the classifiers ability on a larger number of classes

at a high level of GO and includes a total of 572 proteins.

Experiments and Results: The computational experiments were motivated by the fol-

lowing questions:

1. How do NB k-grams, NB(k), and SVM k-grams models compare with each other and

against the baseline represented by Naïve Bayes (NB) classifier?

2. What is the effect of k (which can be viewed as a measure of the complexity of the models

in question) on classification accuracy of the resulting classifiers?

NB k-grams and NB(k) models were constructed and evaluated on the three data sets for

different choices of k from 1 to 4. Values of k larger than 4 were not considered because at

higher values of k we run out of data to obtain reliable probability estimates. SVM k grams

www.manaraa.com

49

k NB NB k-grams NB(k) SVM k-grams
1 66.1 66.1 66.1 84.1
2 81.3 88.6 90.7
3 89.9 92.7 90.3
4 90.4 91.6 X

Table 3.1 Kinase data set results - classification accuracy estimated by
10-fold cross validation (Note: NB method applies only for k=1;
SVM k-grams was found to be infeasible because of computa-
tional and memory requirements k > 3).

k NB NB k-grams NB(k) SVM k-grams
1 77.9 77.9 77.9 97.6
2 83.5 84.6 100.0
3 84.0 85.6 100.0
4 85.9 90.7 X

Table 3.2 Kinase/Ligase data set results - classification accuracy estimated
by 10-fold cross validation (Note: NB method applies only for
k=1; SVM k-grams was found to be infeasible because of com-
putational and memory requirements k > 3).

model, using a linear SVM kernel, was tested with values of k from 1 to 3. (Higher values of k

were not explored because of computational and memory requirements). The reported accuracy

estimates are based on stratified 10-fold cross validation. Within the 10-fold cross validation

experiments, the majority of the individual standard deviations among classifiers were under

1% and never reached above 2%. This shows little variability among the classifiers used for

these experiments.

k NB NB k-grams NB(k) SVM k-grams
1 56.1 56.1 56.1 93.9
2 70.3 72.2 94.5
3 79.5 80.8 94.7
4 79.4 82.0 X

Table 3.3 Kinase/Ligase/Helicase/Isomerase data set results - classification
accuracy estimated by 10-fold cross validation (Note: NB method
applies only for k=1; SVM k-grams was found to be infeasible
because of computational and memory requirements k > 3).

www.manaraa.com

50

Because SVM is a binary classifier, and the problem calls for multi-class classifier, a separate

SVM classifier was constructed for each class. The i-th classifier is trained using the training

data from class i as positive examples and the rest of the training data as negative examples.

Note that unlike SVM, NB, NB k-grams, and NB(k) can build a single multi-class classifier.

Table 1 shows the results using the Kinase data set. We obtained a classification accuracy

of 66% classification using Naive Bayes alone and an accuracy of 84% using SVM 1-gram.

Increasing k to 2 resulted in significant improvements in accuracy: The accuracy increased

to 81.3% for NB 2-grams, 88.6% for NB(2), and 90.7% for SVM 2-grams. In the case of

NB(2) this represents 22% improvement over Naive Bayes and 7% improvement in classification

accuracy over NB 2- grams. SVM on 2-grams only outperformed NB(2) by about 2% in terms of

classification accuracy. NB 3-grams and NB(3) had accuracies of 89.9% and 92.7% respectively,

with NB(3) (92.7%) actually outperforming SVM 3-grams (90.3%). Increasing k to 4 resulted

in little improvement on this data set. NB 4-grams improved by only 0.5% and NB(4), while

performing better than NB 4-grams, has slightly worse accuracy relative to NB(3). This can be

explained by the fact that as k increases, the probability estimates become less and less reliable

(as we run out of data).

Similar results were obtained for the Kinase/Ligase and Kinase/Ligase/Isomerase/Helicase

data sets. NB(4) outperforms NB(3) (by over 5% for the second data set [Table 2] and nearly

1.2% for the third data set [Table 3]) and NB 4-grams (nearly 5% [Table 2] and over 2% [Table

3]. SVM k-grams significantly outperforms NB(k), yielding 100% accuracy for the second data

set and 94.7% accuracy for the third data set. This corresponds to a 14% improvement over

the best accuracy of NB(k) on each of the data sets.

The experimental results demonstrate the superiority of both NB k-grams and NB(k) over

Naive Bayes on all test cases using these data-sets. Furthermore, in terms of accuracy, NB(k)

outperforms NB k-grams, and SVM k-grams significantly outperformed NB(k) in terms of

classification accuracy in two of the three test cases. In one of the test cases, the performance

of SVM k-grams was comparable to that of NB k-grams. The results collectively demonstrate

the utility of representing amino acid sequences in terms of class conditional probabilities of

www.manaraa.com

51

amino acids or k-grams of amino acids for sequence-based assignment of proteins to functional

families.

3.4 Summary and Discussion

Development of robust methods for assigning putative functions to novel proteins and the

discovery of sequence correlates of protein function are important challenges in bioinformatics.

This paper explored several methods for assigning protein sequences to functional families

based on class conditional probability distributions of amino acids or short sub-sequences (k-

grams) of amino acids on three data sets. The data sets were extracted from functional classes

extracted from GO [13] and the corresponding sequences are extracted from SWISSPROT [4].

Our results show that the NB(k) classifier, which models the dependencies among overlap-

ping k-grams in a sequence, consistently outperforms NB k-grams and the Naive Bayes classifier

in terms of classification accuracy. SVM k-grams, which also uses the class conditional k-gram

probabilities for the sequences outperforms NB(k) on two of the three data sets in terms of

classification accuracy.

NB k-grams and NB(k) require only one pass through the data which makes the resulting

classifiers easy to construct and update as new data become available. In contrast, at present,

there are no efficient algorithms for updating SVM classifiers to incorporate new data in an

incremental fashion. This makes NB(k) an attractive alternative when using large data sets or

data sets that are rapidly being updated or modified.

Some directions for future work include: exploration of classifiers constructed using reduced

alphabet representations of protein sequence [2]; development of principled approaches to as-

signing a protein sequence simultaneously to multiple classes (in the case of multifunctional

proteins); incorporation of other sources of information (e.g., expression data, interaction data,

structural features) to enhance the accuracy of function classification; examination of the result-

ing classifiers to identify testable hypotheses concerning sequence correlates of protein function

and to guide the design of experiments to validate such hypotheses.

www.manaraa.com

52

3.5 PostScript

Since the original publication of this paper additional results have been obtain in this vein

[3].

Bibliography

[1] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, W. Miller, and D.J. Lipman. Gapped

blast and psi-blast: a new generation of protein database search programs. In Nucleic Acid

Res. Sep 1; 2(17):3389 - 3402 ,1997.

[2] C. Andorf, D. Dobbs, and V. Honavar. Discovering protein function classification rules from

reduced alphabet representations of protein sequences. In Proceedings of the Conference

on Computational Biology and Genome Informatics. Durham, North Carolina, 2002.

[3] C. Andorf, D. Dobbs, and V. Honavar. Exploring Inconsistencies in Genome Wide Protein

Function Annotations: A Machine Learning Approach. BMC Bioinformatics, 8:284, 2007

[4] B. Boeckmann, A. Bairoch, R. Apweiler, M. Blatter, A. Estreicher, E. Gasteiger, M.

Martin, K. Michoud, C. O’Donovan, I. Phan, S. Pilbout, and M. Schneider. The Swiss-

Prot protein knowledgebase and its supplement trembl in 2003. Nucleic Acid Res. 31:365

– 370, 2003.

[5] T. Bailey, M. Baker, C. Elkan, and W. Grundy. Meme, mast, and metameme: New tools

for motif discovery in protein sequences. Pattern Discovery in Biomolecular Data. Oxford

University Press, Oxford, pp. 30 – 54, 1999.

[6] P. Baldi and S. Brunak. Bioinformatics: The Machine Learning Approach. Cambridge,

MA: MIT Press, 1998.

[7] A. Ben-Hur and D. Brutlag. Remote homology detection: a motif based approach. Bioin-

formatics, 19 Suppl. 1, 2003.

www.manaraa.com

53

[8] M. Bhasin and G. Raghava. ESLpred: SVM-based method for subcellular localization of

eukaryotic proteins using dipeptide composition and PSI-BLAST. Nucleic Acids Research,

32, 2004.

[9] B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers.

Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pp.

144 – 152, Pittsburg, PA, ACM Press, 1992.

[10] E. Charniak. Statistical Language Learning, Cambridge. MIT Press, 1993.

[11] R. Cowell, A. Dawid, S. Lauritzen, and D. Spiegelhalter. Probabilistic Networks and Expert

Systems. Springer, 1999.

[12] D. Eisenberg, E. Marcotte, and T. Xenarios, and I. Yeates. Protein function in the post-

genomic era. Nature. 405(6788): 823-6, 2000.

[13] The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nature

Genet., 25: 25 – 29, 2000.

[14] S. Hua and Z. Sun. Support vector machine approach for protein subcellular localization

prediction. Bioinformatics, 17(8):721 – 728, 2001.

[15] J. Huang and D. Brutlag. The emotif database. Nucleic Acids Res. Jan 1, 29(1): 202-4,

2001.

[16] G. Lanckriet, N. Cristianini, M. Jordan, and W. Noble. Kernel-based integration of ge-

nomic data using semidefinite programming. In B. Schoelkopf, K. Tsuda and J-P. Vert

(Eds.), Kernel Methods in Computational Biology, Cambridge, MA: MIT Press, 2003.

[17] T. Mitchell, Machine Learning, McGraw Hill, 1997.

[18] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Publishers,

1988.

[19] B. Rost. Twilight zone of protein sequence alignments. Protein Eng. 12(2): 85 – 94, 1999.

www.manaraa.com

54

[20] A. Silvescu, C. Andorf, D. Dobbs, and V. Honavar. Inter-element dependency models for

sequence classification, Technical report, Department of Computer Science, Iowa State

University, 2004.

[21] V. Vapnik. Statistical learning theory. Adaptive and learning systems for signal processing,

communications, and control. Wiley, New York, 1998.

[22] X. Wang, D. Schroeder, D. Dobbs, and V. Honavar. Automated data-driven discovery of

protein function classifiers. Information Sciences, 155:1 – 18, 2003.

[23] C. Yan, D. Dobbs, V. Honavar. A two-stage classifier for identification of protein-protein

interface residues. Bioinformatics, 20:371-378, 2004.

www.manaraa.com

55

CHAPTER 4. GENERATION OF ATTRIBUTE VALUE TAXONOMIES

FROM DATA FOR ACCURATE AND COMPACT CLASSIFIER

CONSTRUCTION

Modified from a paper published in the Proceedings of the IEEE International Conference on

Data Mining1

Dae-Ki Kang2, Adrian Silvescu3 Jun Zhang4

and Vasant Honavar

Abstract

Attribute Value Taxonomies (AVT) have been shown to be useful in constructing compact,

robust, and comprehensible classifiers. However, in many application domains, human-designed

AVTs are unavailable. We introduce AVT-Learner, an algorithm for automated construction of

attribute value taxonomies from data. AVT-Learner uses Hierarchical Agglomerative Clustering

(HAC) to cluster attribute values based on the distribution of classes that co-occur with the

values. We describe experiments on UCI data sets that compare the performance of AVT-NBL

(an AVT-guided Naive Bayes Learner) with that of the standard Naive Bayes Learner (NBL)

applied to the original data set. Our results show that the AVTs generated by AVT-Learner are

competitive with human-generated AVTs (in cases where such AVTs are available). AVT-NBL
1Reprinted (no permission needed as the copyrights were not transfered) from Proceedings of the IEEE

International Conference on Data Mining (ICDM 2004), Brighton, UK, November 1, 2004.
2Primary researcher and author - implemented the experimental setup and performed and designed the

experiments.
3Primary researcher and author - proposed and designed the method and the validation setup.
4Primary researcher and author - contributed the classifier used for validation.

www.manaraa.com

56

Odor attribute

Bad

isa

n

isa

Pleasant

isa

p

isa

c

isa

y

isa

f

isa

m

isa

a

isa

l

isa

s

isa

Figure 4.1 Human-made AVT from ‘odor’ attribute of UCI AGARI-
CUS-LEPIOTA mushroom data set.

using AVTs generated by AVT-Learner achieves classification accuracies that are comparable

to or higher than those obtained by NBL; and the resulting classifiers are significantly more

compact than those generated by NBL.

4.1 Introduction

An important goal of inductive learning is to generate accurate and compact classifiers

from data. In a typical inductive learning scenario, instances to be classified are represented as

ordered tuples of attribute values. However, attribute values can be grouped together to reflect

assumed or actual similarities among the values in a domain of interest or in the context of a

specific application. Such a hierarchical grouping of attribute values yields an attribute value

taxonomy (AVT). For example, Figure 4.1 shows a human-made taxonomy associated with the

nominal attribute ‘Odor’ of the UC Irvine AGARICUS-LEPIOTA mushroom data set [5].

Hierarchical groupings of attribute values (AVT) are quite common in biological sciences.

For example, the Gene Ontology Consortium is developing hierarchical taxonomies for de-

scribing many aspects of macromolecular sequence, structure, and function [1]. Undercoffer et

al. [34] have developed a hierarchical taxonomy which captures the features that are observable

or measurable by the target of an attack or by a system of sensors acting on behalf of the target.

Several ontologies being developed as part of the Semantic Web related efforts [4] also capture

hierarchical groupings of attribute values. Kohavi and Provost [19] have noted the need to be

able to incorporate background knowledge in the form of hierarchies over data attributes in

www.manaraa.com

57

electronic commerce applications of data mining.

There are several reasons for exploiting AVT in learning classifiers from data, perhaps the

most important being a preference for comprehensible and simple, yet accurate and robust

classifiers [24] in many practical applications of data mining. The availability of AVT presents

the opportunity to learn classification rules that are expressed in terms of abstract attribute

values leading to simpler, easier-to-comprehend rules that are expressed in terms of hierar-

chically related values. Thus, the rule (odor = pleasant) → (class = edible) is likely to be

preferred over ((odor = a) ∧ (color = brown)) ∨ ((odor = l) ∧ (color = brown)) ∨ ((odor =

s) ∧ (color = brown)) → (class = edible) by a user who is familiar with the odor taxonomy

shown in Figure 4.1.

Another reason for exploiting AVTs in learning classifiers from data arises from the necessity,

in many application domains, for learning from small data sets where there is a greater chance of

generating classifiers that over-fit the training data. A common approach used by statisticians

when estimating from small samples involves shrinkage [9] or grouping attribute values (or more

commonly class labels) into bins, when there are too few instances that match any specific

attribute value or class label, to estimate the relevant statistics with adequate confidence.

Learning algorithms that exploit AVT can potentially perform shrinkage automatically thereby

yielding robust classifiers. In other words, exploiting information provided by an AVT can be

an effective approach to performing regularization to minimize over-fitting [40].

Consequently, several algorithms for learning classifiers from AVTs and data have been

proposed in the literature. This work has shown that AVTs can be exploited to improve the

accuracy of classification and in many instances, to reduce the complexity and increase the com-

prehensibility of the resulting classifiers [8, 13, 16, 32, 40, 43]. Most of these algorithms exploit

AVTs to represent the information needed for classification at different levels of abstraction.

However, in many domains, AVTs specified by human experts are unavailable. Even when

a human-supplied AVT is available, it is interesting to explore whether alternative groupings of

attribute values into an AVT might yield more accurate or more compact classifiers. Against

this background, we explore the problem of automated construction of AVTs from data. In

www.manaraa.com

58

particular, we are interested in AVTs that are useful for generating accurate and compact

classifiers.

4.2 Learning attribute value taxonomies from data

4.2.1 Learning AVT from data

We describe AVT-Learner, an algorithm for automated construction of AVT from a data

set of instances wherein each instance is described by an ordered tuple of N nominal attribute

values and a class label.

Let A = {A1, A2, . . . , An} be a set of nominal attributes. Let Vi =
{
v1
i , v

2
i , . . . , v

mi
i

}
be

a finite domain of mutually exclusive values associated with attribute Ai where vj
i is the jth

attribute value of Ai and mi is the number possible number of values of Ai, that is, |Vi|. We

say that Vi is the set of primitive values of attribute Ai. Let C = {C1, C2, . . . , Ck} be a set of

mutually disjoint class labels. A data set is D ⊆ V1 × V2 × · · · × Vn × C.

Let T = {T1, T2, . . . , Tn} denote a set of AVT such that Ti is an AVT associated with the

attribute Ai, and Leaves(Ti) denote a set of all leaf nodes in Ti. We define a cut δi of an

AVT Ti to be a subset of nodes in Ti satisfying the following two properties: (1) For any leaf

l ∈ Leaves(Ti), either l ∈ δi or l is a descendant of a node n ∈ δi; and (2) for any two nodes

f, g ∈ δi, f is neither a descendant nor an ancestor of g [14]. For example, {Bad, a, l, s, n} is a

cut through the AVT for odor shown in Figure 4.1. Note that a cut through Ti corresponds to

a partition of the values in Vi. Let ∆ = {δ1, δ2, . . . δn} be a set of cuts associated with AVTs in

T = {T1, T2, . . . Tn}.

The problem of learning AVTs from data can be stated as follows: given a data set D ⊆

V1 × V2 × · · · × Vn ×C and a measure of dissimilarity (or equivalently similarity) between any

pair of values of an attribute, output a set of AVTs T = {T1, T2, . . . , Tn} such that each Ti

(AVT associated with the attribute Ai) corresponds to a hierarchical grouping of values in Vi

based on the specified similarity measure.

We use hierarchical agglomerative clustering (HAC) of the attribute values according to the

distribution of classes that co-occur with them. Let DM (P (x) ||P (y)) denote a measure of

www.manaraa.com

59

pairwise divergence between two probability distributions P (x) and P (y) where the random

variables x and y take values from the same domain. We use the pairwise divergence between

the distributions of class labels associated with the corresponding attribute values as a measure

of the dissimilarity between the attribute values. The lower the divergence between the class

distributions associated with two attributes, the greater is their similarity. The choice of this

measure of dissimilarity between attribute values is motivated by the intended use of the AVT,

namely, the construction of accurate, compact, and robust classifiers. If two values of an

attribute are indistinguishable from each other with respect to their class distributions, they

provide statistically similar information for classification of instances.

The algorithm for learning AVT for a nominal attribute is shown in Figure 4.2. The basic

idea behind AVT-Learner is to construct an AVT Ti for each attribute Ai by starting with

the primitive values in Vi as the leaves of Ti and recursively add nodes to Ti one at a time by

merging two existing nodes. To aid this process, the algorithm maintains a cut δi through the

AVT Ti, updating the cut δi as new nodes are added to Ti. At each step, the two attribute

values to be grouped together to obtain an abstract attribute value to be added to Ti are

selected from δi based on the divergence between the class distributions associated with the

corresponding values. That is, a pair of attribute values in δi are merged if they have more

similar class distributions than any other pair of attribute values in δi. This process terminates

when the cut δi contains a single value which corresponds to the root of Ti. If |Vi| = mi, the

resulting Ti will have (2mi − 1) nodes when the algorithm terminates.

In the case of continuous-valued attributes, we define intervals based on observed values for

the attribute in the data set. We then generate a hierarchical grouping of adjacent intervals,

selecting at each step two adjacent intervals to merge using the pairwise divergence measure.

A cut through the resulting AVT corresponds to a discretization of the continuous-valued

attribute. A similar approach can be used to generate AVT from ordinal attribute values.

www.manaraa.com

60

AVT-Learner:
begin
1. Input : data set D
2. For each attribute Ai:
3. For each attribute value vj

i :
4. For each class label ck: estimate the probability p

(
ck|vj

i

)
5. Let P

(
C|vj

i

)
:=

{
P

(
c1|vj

i

)
, . . . , P

(
ck|vj

i

)}
6. Set δi ← Vi; Initialize Ti with nodes in δi.
7. Iterate until |δi| = 1:
8. In δi, find (x, y) = argmin {DM (P (C|vx

i) ||P (C|vy
i))}

9. Merge vx
i and vy

i (x 6= y) to create a new value vxy
i .

10. Calculate probability distribution P (C|vxy
i).

11. λi ← δi ∪ {vxy
i } \ {vx

i , v
y
i }.

12. Update Ti by adding nodes vxy
i as a parent of vx

i and vy
i .

13. δi ← λi.
14. Output : T = {T1, T2, . . . , Tn}
end.

Figure 4.2 Pseudo-code of AVT-Learner

4.2.2 Pairwise divergence measures

There are several ways to measure similarity between two probability distributions. We

have tested thirteen divergence measures for probability distributions P and Q. In this paper,

we limit the discussion to Jensen-Shannon divergence measure.

Jensen-Shannon divergence [29] is weighted information gain, also called Jensen dif-

ference divergence, information radius, Jensen difference divergence, and Sibson-Burbea-Rao

Jensen Shannon divergence. It is given by:

I (P ||Q) =
1
2

[∑
pilog

(
2pi

pi + qi

)
+

∑
qilog

(
2qi

pi + qi

)]
Jensen-Shannon divergence is reflexive, symmetric and bounded. Figure 4.3 shows an AVT of

‘odor’ attribute generated by AVT-Learner (with binary clustering).

4.3 Evaluation of AVT-Learner

The intuition behind our approach to evaluating the AVT generated by AVT-Learner is the

following: an AVT that captures relevant relationships among attribute values can result in the

www.manaraa.com

61

Odor attribute

(((p+c)+(f+(s+y)))+m)

isa

(n+(l+a))

isa

m

isa

((p+c)+(f+(s+y)))

isa

(f+(s+y))

isa

(p+c)

isa

(s+y)

isa

f

isa

y

isa

s

isa

c

isa

p

isa

(l+a)

isa

n

isa

a

isa

l

isa

Figure 4.3 AVT of ‘odor’ attribute of UCI AGARICUS-LEPIOTA mush-
room data set generated by AVT-Learner using Jensen-Shannon
divergence (binary clustering)

generation of simple and accurate classifiers from data, just as an appropriate choice of axioms

in a mathematical domain can simplify proofs of theorems. Thus, the simplicity and predictive

accuracy of the learned classifiers based on alternative choices of AVT can be used to evaluate

the utility of the corresponding AVT in specific contexts.

4.3.1 AVT guided variants of standard learning algorithms

It is possible to extend standard learning algorithms in principled ways so as to exploit the

information provided by AVT. AVT-DTL [37, 43, 40] and the AVT-NBL [41] which extend the

decision tree learning algorithm [26] and the Naive Bayes learning algorithm [21] respectively

are examples such algorithms.

The basic idea behind AVT-NBL is to start with the Naive Bayes Classifier that is based

on the most abstract attribute values in AVTs and successively refine the classifier by a scoring

function - a Conditional Minimum Description Length (CMDL) score suggested by Friedman

et al. [10] to capture trade-off between the accuracy of classification and the complexity of the

www.manaraa.com

62

resulting Naive Bayes classifier.

The experiments reported by Zhang and Honavar [41] using several benchmark data sets

show that AVT-NBL is able to learn, using human generated AVT, substantially more accurate

classifiers than those produced by Naive Bayes Learner (NBL) applied directly to the data sets

as well as NBL applied to data sets represented using a set of binary features that correspond to

the nodes of the AVT (PROP-NBL). The classifiers generated by AVT-NBL are substantially

more compact than those generated by NBL and PROP-NBL. These results hold across a

wide range of missing attribute values in the data sets. Hence, the performance of Naive

Bayes classifiers generated by AVT-NBL when supplied with AVT generated by the AVT-

Learner provide useful measures of the effectiveness of AVT-Learner in discovering hierarchical

groupings of attribute values that are useful in constructing compact and accurate classifiers

from data.

4.4 Experiments

4.4.1 Experimental setup

Figure 4.4 shows the experimental setup. The AVT generated by the AVT-Learner are

evaluated by comparing the performance of the Naive Bayes Classifiers produced by applying

• NBL to the original data set

• AVT-NBL to the original data set (See Figure 4.4).

For the benchmark data sets, we chose 37 data sets from UCI data repository [5].

Among the data sets we have chosen, AGARICUS-LEPIOTA data set and NURSERY data

set have AVT supplied by human experts. AVT for AGARICUS-LEPIOTA data was prepared

by a botanist, and AVT for NURSERY data was based on our understanding of the domain.

We are not aware of any expert-generated AVTs for other data sets.

In each experiment, we randomly divided each data set into 3 equal parts and used 1/3 of

the data for AVT construction using AVT-Learner. The remaining 2/3 of the data were used

for generating and evaluating the classifier. Each set of AVTs generated by the AVT-Learner

www.manaraa.com

63

Figure 4.4 Evaluation of AVT using AVT-NBL

was evaluated in terms of the error rate and the size of the resulting classifiers (as measured

by the number of entries in conditional probability tables). The error rate and size estimates

were obtained using 10-fold cross-validation on the part of the data set (2/3) that was set

aside for evaluating the classifier. The results reported correspond to averages of the 10-fold

cross-validation estimates obtained from the three choices of the AVT-construction and AVT-

evaluation. This process ensures that there is no information leakage between the data used

for AVT construction, and the data used for classifier construction and evaluation.

10-fold cross-validation experiments were performed to evaluate human expert-supplied

AVT on the AVT evaluation data sets used in the experiments described above for the AGARICUS-

LEPIOTA data set and the NURSERY data set.

We also evaluated the robustness of the AVT generated by the AVT-Learner by using them

to construct classifiers from data sets with varying percentages of missing attribute values. The

data sets with different percentages of missing values were generated by uniformly sampling

from instances and attributes to introduce the desired percentage of missing values.

4.4.2 Results

AVT generated by AVT-Learner are competitive with human-generated AVT

when used by AVT-NBL. The results of our experiments shown in Figure 4.5 indicate

that AVT-Learner is effective in constructing AVTs that are competitive with human expert-

supplied AVTs for use in classification tasks with respect to the error rates and the size of the

www.manaraa.com

64

Figure 4.5 The estimated error rates of classifiers generated by NBL and
AVT-NBL on AGARICUS-LEPIOTA data with different per-
centages of missing values. HT stands for human-supplied
AVT. JS denotes AVT constructed by AVT-Learner using
Jensen-Shannon divergence.

resulting classifiers.

AVT-Learner can generate useful AVT when no human-generated AVT are

available. For most of the data sets, there are no human-supplied AVT’s available. Fig-

ure 4.6 shows the error rate estimates for Naive Bayes classifiers generated by AVT-NBL using

AVT generated by the AVT-Learner and the classifiers generated by NBL applied to the DER-

MATOLOGY data set. The results shown suggest that AVT-Learner, using Jensen-Shannon

divergence, is able to generate AVTs that when used by AVT-NBL, result in classifiers that are

more accurate than those generated by NBL.

Additional experiments with other data sets produced similar results. Table 4.1 shows the

classifier’s accuracy on original UCI data sets for NBL and AVT-NBL that uses AVTs generated

by AVT-Learner. 10-fold cross-validation is used for evaluation, and Jensen-Shannon divergence

is used for AVT generation. The user-specified number for discretization is 10.

Thus, AVT-Learner is able to generate AVTs that are useful for constructing compact and

accurate classifiers from data.

AVT generated by AVT-Learner, when used by AVT-NBL, yield substantially

more compact Naive Bayes Classifiers than those produced by NBL Naive Bayes

www.manaraa.com

65

Data NBL AVT-NBL
Anneal 86.3029 98.9978

Audiology 73.4513 76.9912
Autos 56.0976 86.8293

Balance-scale 90.4 91.36
Breast-cancer 71.6783 72.3776

Breast-w 95.9943 97.2818
Car 85.5324 86.169
Colic 77.9891 83.4239

Credit-a 77.6812 86.5217
Credit-g 75.4 75.4

Dermatology 97.8142 98.0874
Diabetes 76.3021 77.9948

Glass 48.5981 80.8411
Heart-c 83.4983 87.1287
Heart-h 83.6735 86.3946

Heart-statlog 83.7037 86.6667
Hepatitis 84.5161 92.9032

Hypothyroid 95.281 95.7847
Ionosphere 82.6211 94.5869

Iris 96 94.6667
Kr-vs-kp 87.8911 87.9224
Labor 89.4737 89.4737
Letter 64.115 70.535
Lymph 83.1081 84.4595

Mushroom 95.8272 99.5938
Nursery 90.3241 90.3241

Primary-tumor 50.1475 47.7876
Segment 80.2165 90

Sick 92.6829 97.8261
Sonar 67.7885 99.5192

Soybean 92.9722 94.5827
Splice 95.3605 95.768
Vehicle 44.7991 67.8487
Vote 90.1149 90.1149
Vowel 63.7374 42.4242

Waveform-5000 80 65.08
Zoo 93.0693 96.0396

Table 4.1 Accuracy of NBL and AVT-NBL on UCI data sets

www.manaraa.com

66

Figure 4.6 The error rate estimates of the Standard Naive Bayes Learner
(NBL) compared with that of AVT-NBL on DERMATOLOGY
data. JS denotes AVT constructed by AVT-Learner using
Jensen-Shannon divergence.

classifiers constructed by AVT-NBL generally have smaller number of parameters than those

from NBL (See Figures 4.7 for representative results). Table 4.2 shows the classifier size mea-

sured by the number of parameters on selected UCI data sets for NBL and AVT-NBL that uses

AVTs generated by AVT-Learner.

These results suggest that AVT-Learner is able to group attribute values into AVT in such a

way that the resulting AVT, when used by AVT-NBL, result in compact yet accurate classifiers.

4.5 Summary and discussion

4.5.1 Summary

In many applications of data mining, there is a strong preference for classifiers that are both

accurate and compact [19, 24]. Previous work has shown that attribute value taxonomies can be

exploited to generate such classifiers from data [40, 41]. However, human-generated AVTs are

unavailable in many application domains. Manual construction of AVTs requires a great deal of

domain expertise, and in case of large data sets with many attributes and many values for each

attribute, manual generation of AVTs is extremely tedious and hence not feasible in practice.

Against this background, we have described in this paper, AVT-Learner, a simple algorithm for

automated construction of AVT from data. AVT-Learner recursively groups values of attributes

www.manaraa.com

67

Figure 4.7 The size (as measured by the number of parameters) of the
Standard Naive Bayes Learner (NBL) compared with that
of AVT-NBL on AGARICUS-LEPIOTA data. HT stands
for human-supplied AVT. JS denotes AVT constructed by
AVT-Learner using Jensen-Shannon divergence.

Data NBL AVT-NBL
Audiology 3720 3600

Breast-cancer 104 62
Car 88 80

Dermatology 906 540
Kr-vs-kp 150 146

Mushroom 252 124
Nursery 140 125

Primary-tumor 836 814
Soybean 1919 1653
Splice 864 723
Vote 66 66
Zoo 259 238

Table 4.2 Parameter size of NBL and AVT-NBL on selected UCI data sets

www.manaraa.com

68

Data 2-ary 3-ary 4-ary
Nursery 90.3241 90.3241 90.3241

Audiology 76.9912 76.5487 76.9912
Car 86.169 86.169 86.169

Dermatology 98.0874 97.541 97.541
Mushroom 99.5938 99.7292 99.7538
Soybean 94.5827 94.4363 94.4363

Table 4.3 Accuracy of NBL and AVT-NBL for k-ary AVT-Learner

based on a suitable measure of divergence between the class distributions associated with the

attribute values to construct an AVT. AVT-Learner is able to generate hierarchical taxonomies

of nominal, ordinal, and continuous valued attributes. The experiments reported in this paper

show that:

• AVT-Learner is effective in generating AVTs that when used by AVT-NBL, a principled

extension of the standard algorithm for learning Naive Bayes classifiers, result in classifiers

that are substantially more compact (and often more accurate) than those obtained by

the standard Naive Bayes Learner (that does not use AVTs).

• The AVTs generated by AVT-Learner are competitive with human supplied AVTs (in the

case of benchmark data sets where human-generated AVTs were available) in terms of

both the error rate and size of the resulting classifiers.

4.5.2 Discussion

The AVTs generated by AVT-Learner are binary trees. Hence, one might wonder if k-

ary AVTs yield better results when used with AVT-NBL. Figure 4.8 shows an AVT of ‘odor’

attribute generated by AVT-Learner (with quaternary clustering). Table 4.3 shows the accuracy

of AVT-NBL when k-ary clustering is used by AVT-Learner. It can be seen that AVT-NBL

generally works best when binary AVTs are used. It is because reducing internal nodes in AVT-

Learner will eventually reduce the search space for possible cuts in AVT-NBL, which leads to

generating a less compact classifier.

www.manaraa.com

69

Odor attribute

(l+a)

isa

m

isa

((p+c)+(f+(s+y)))

isa

n

isa

a

isa

l

isa

(s+y)

isa

c

isa

f

isa

p

isa

y

isa

s

isa

Figure 4.8 AVT of ‘odor’ attribute of UCI AGARICUS-LEPIOTA mush-
room data set generated by AVT-Learner using Jensen-Shannon
divergence (with quaternary clustering)

4.5.3 Related work

Gibson and Kleinberg [12] introduced STIRR, an iterative algorithm based on non-linear

dynamic systems for clustering categorical attributes. Ganti et. al. [11] designed CACTUS,

an algorithm that uses intra-attribute summaries to cluster attribute values. However, both of

them did not make taxonomies and use the generated for improving classification tasks. Pereira

et. al. [25] described distributional clustering for grouping words based on class distributions

associated with the words in text classification. Yamazaki et al., [37] described an algorithm

for extracting hierarchical groupings from rules learned by FOCL (an inductive learning algo-

rithm) [23] and reported improved performance on learning translation rules from examples in

a natural language processing task. Slonim and Tishby [29, 30] described a technique (called

the agglomerative information bottleneck method) which extended the distributional cluster-

ing approach described by Pereira et al. [25], using Jensen-Shannon divergence for measuring

distance between document class distributions associated with words and applied it to a text

classification task. Baker and McCallum [3] reported improved performance on text classifica-

tion using a technique similar to distributional clustering and a distance measure, which upon

closer examination, can be shown to be equivalent to Jensen-Shannon divergence [29].

www.manaraa.com

70

To the best of our knowledge, there has been little work on the evaluation of techniques

for generating hierarchical groupings of attribute values (AVTs) on classification tasks using a

broad range of benchmark data sets using algorithms such as AVT-DTL or AVT-NBL that are

capable of exploiting AVTs in learning classifiers from data.

4.5.4 Future work

Some directions for future work include:

• Extending AVT-Learner described in this paper to learn AVTs that correspond to tangled

hierarchies (which can be represented by directed acyclic graphs (DAG) instead of trees).

• Learning AVT from data for a broad range of real world applications such as census data

analysis, text classification, intrusion detection from system log data [15], learning clas-

sifiers from relational data [2], and protein function classification [36] and identification

of protein-protein interfaces [38].

• Developing algorithms for learning hierarchical ontologies based on part-whole and other

relations as opposed to ISA relations captured by an AVT.

• Developing algorithms for learning hierarchical groupings of values associated with more

than one attribute.

4.6 Postscript

Since the original publication of this paper additional work has been done in terms of using

Taxonomies generated by the algorithm described here in other learning setups [39] [35] [18].

Bibliography

[1] M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K.

Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis,

S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, and G. Sherlock.

www.manaraa.com

71

Gene ontology: tool for the unification of biology. the gene ontology consortium. Nature

Genetics, 25(1):25–29, 2000.

[2] A. Atramentov, H. Leiva, and V. Honavar. A multi-relational decision tree learning al-

gorithm - implementation and experiments. In T. Horváth and A. Yamamoto, editors,

Proceedings of the 13th International Conference on Inductive Logic Programming (ILP

2003). Vol. 2835 of Lecture Notes in Artificial Intelligence : Springer-Verlag, pages 38–56,

2003.

[3] L.D. Baker and A.K. McCallum. Distributional clustering of words for text classification.

In Proceedings of the 21st annual international ACM SIGIR conference on Research and

development in information retrieval, pages 96–103. ACM Press, 1998.

[4] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, 0:0,

May 2001.

[5] C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

[6] J. Burbea and C.R. Rao. Entropy differential metric, distance and divergence measures in

probability spaces: A unified approach. J. Multi. Analysis, 12:575–596, 1982.

[7] J. Burbea and C.R. Rao. On the convexity of some divergence measures based on entropy

functions. IEEE Trans. on Inform. Theory, IT-28:489–495, 1982.

[8] V. Dhar and A. Tuzhilin. Abstract-driven pattern discovery in databases. IEEE Transac-

tions on Knowledge and Data Engineering, 5(6):926–938, 1993.

[9] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification (2nd Edition). Wiley-

Interscience, 2000.

[10] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Mach. Learn.,

29(2-3):131–163, 1997.

www.manaraa.com

72

[11] V. Ganti, J. Gehrke, and R. Ramakrishnan. Cactus - clustering categorical data using sum-

maries. In Proceedings of the fifth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 73–83. ACM Press, 1999.

[12] D. Gibson, J.M. Kleinberg, and Prabhakar Raghavan. Clustering categorical data: An

approach based on dynamical systems. VLDB Journal: Very Large Data Bases, 8(3–

4):222–236, 2000.

[13] J. Han and Y. Fu. Exploration of the power of attribute-oriented induction in data min-

ing. In Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhr Smyth, and Ramasamy

Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining. AIII Press/MIT

Press, 1996.

[14] D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant’s learning

framework. Artificial intelligence, 36:177 – 221, 1988.

[15] G. Helmer, J.S.K. Wong, V.G. Honavar, and L. Miller. Automated discovery of concise

predictive rules for intrusion detection. J. Syst. Softw., 60(3):165–175, 2002.

[16] J. Hendler, K. Stoffel, and M. Taylor. Advances in high performance knowledge repre-

sentation. Technical Report CS-TR-3672, University of Maryland Institute for Advanced

Computer Studies Dept. of Computer Science, 1996.

[17] H. Jeffreys. An invariant form for the prior probability in estimation procedures. In

Proceedings of the Royal Society, London, Ser. A, 186, pages 453–461, London, UK, 1946.

[18] D-K. Kang, J. Zhang, A. Silvescu, and V. Honavar. Multinomial event model based

abstraction for sequence and text classification. In In: Proceedings of the Symposium on

Abstraction, Reformulation, and Approximation (SARA 2005), 2005.

[19] R. Kohavi and F. Provost. Applications of data mining to electronic commerce. Data Min.

Knowl. Discov., 5(1-2):5–10, 2001.

www.manaraa.com

73

[20] S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Statist.,

22:79–86, 1951.

[21] P. Langley, W. Iba, and K. Thompson. An analysis of bayesian classifiers. In National

Conference on Artificial Intelligence, pages 223–228, 1992.

[22] T.M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[23] M. Pazzani and D. Kibler. The role of prior knowledge in inductive learning. Machine

Learning, 9:54–97, 1992.

[24] M.J. Pazzani, S. Mani, and W.R. Shankle. Beyond concise and colorful: Learning intelli-

gible rules. In Knowledge Discovery and Data Mining, pages 235–238, 1997.

[25] F. Pereira, N. Tishby, and L. Lee. Distributional clustering of English words. In 31st

Annual Meeting of the ACL, pages 183–190, 1993.

[26] J.R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc.,

1993.

[27] J.S. Schlimmer. Concept acquisition through representational adjustment. Technical Re-

port 87-19, Department of Information and Computer Science, University of California,

1987. Doctoral dissertation.

[28] R. Sibson. Information radius. Z. Wahrs. und verw Geb., 14:149–160, 1969.

[29] N. Slonim and N. Tishby. Agglomerative information bottleneck. In Proceedings of the

13th Neural Information Processing Systems (NIPS 1999), 1999.

[30] N. Slonim and N. Tishby. Document clustering using word clusters via the information

bottleneck method. In Proceedings of the 23rd annual international ACM SIGIR conference

on Research and development in information retrieval, pages 208–215. ACM Press, 2000.

[31] I.J. Taneja. New developments in generalized information measures. Advances in Imaging

and Electron Physics, 91:37–135, 1995.

www.manaraa.com

74

[32] M. Taylor, K. Stoffel, , and J. Hendler. Ontology based induction of high level classifi-

cation rules. In SIGMOD Workshop on Research Issues on Data Mining and Knowledge

Discovery, 1997.

[33] F. Topsφe. Some inequalities for information divergence and related measures of discrim-

ination. IEEE Transactions on Information Theory, 46:1602–1609, 2000.

[34] J.L. Undercoffer, A. Joshi, T. Finin, and J. Pinkston. A Target Centric Ontology for

Intrusion Detection: Using DAML+OIL to Classify Intrusive Behaviors. Knowledge En-

gineering Review, 0:0, January 2004.

[35] F. Vasile, A. Silvescu, D.-K. Kang, and V. Honavar. Tripper: Rule learning using tax-

onomies. In Proceedings of the Tenth Pacific-Asia Conference on Knowledge Discovery

and Data Mining (PAKDD 2006), 2006.

[36] X. Wang, D. Schroeder, D. Dobbs, and V.G. Honavar. Automated data-driven discovery

of motif-based protein function classifiers. Inf. Sci., 155(1-2):1–18, 2003.

[37] T. Yamazaki, M.J. Pazzani, and C.J. Merz. Learning hierarchies from ambiguous natural

language data. In International Conference on Machine Learning, pages 575–583, 1995.

[38] C. Yan, D. Dobbs, and V. Honavar. Identification of surface residues involved in protein-

protein interaction – a support vector machine approach. In A. Abraham, K. Franke, and

M. Koppen, editors, Intelligent Systems Design and Applications (ISDA-03), pages 53–62,

2003.

[39] J. Zhang, D.-K. Kang, A. Silvescu, and V. Honavar. Learning accurate and concise naive

bayes classifiers from attribute value taxonomies and data. Knowledge and Information

Systems, 9(2):157–179, 2006.

[40] J. Zhang and V. Honavar. Learning decision tree classifiers from attribute value taxonomies

and partially specified data. In the Twentieth International Conference on Machine Learn-

ing (ICML 2003), Washington, DC, 2003.

www.manaraa.com

75

[41] J. Zhang and V. Honavar. AVT-NBL: An algorithm for learning compact and accurate

naive bayes classifiers from attribute value taxonomies and data. In International Confer-

ence on Data Mining (ICDM 2004), 2004. To appear.

[42] J. Zhang and V. Honavar. Learning naive bayes classifiers from attribute value taxonomies

and partially specified data. In International Conference on Intelligent System Design and

Applications (ISDA 2004), 2004.

[43] J. Zhang, A. Silvescu and V. Honavar. Ontology-driven induction of decision trees at

multiple levels of abstraction. In Proceedings of Symposium on Abstraction, Reformulation,

and Approximation 2002. Vol. 2371 of Lecture Notes in Artificial Intelligence: Springer-

Verlag, 2002.

www.manaraa.com

76

CHAPTER 5. ABSTRACTION SUPERSTRUCTURING NORMAL

FORMS

Modified from a paper to be submitted to Information and Computation

Adrian Silvescu

Abstract

Induction is the process by which we obtain laws (or more encompassing - theories) about

the world. A theory can be viewed as consisting of essentially two aspects: a structural and

a numeric one. In this paper we are concerned with the structural aspect of theories, which

characterizes the variables involved in the theory and their relationships. A priori there are

an infinite number of types of possible structurral laws that can be postulated as holding in

a theory . We ask the question whether we can find a finite and minmalistic set of structural

elements in terms of which any theory can be decomposed. We identify Abstraction (grouping

similar entities under one overarching category) and Super-Structuring (grouping into a unit

topologically close entities - in particular spatio-temporally close) as the essential structural

elements in the induction process. We shown that only two more structural elements are needed

in order to obtain the full blown capacity of Turing Machines - the dual versions: Reverse

Abstraction and Reverse SuperStructuring. We explore the implications of this theorem about

the nature of hidden variables and radical positivism. We also show that our main theorem can

be seen as a proof, under the Computationalistic Assumption (a.k.a. Church-Turing thesis),

of a more than 200 years old claim of the philosopher David Hume about the principles of

connexion among ideas.

www.manaraa.com

77

5.1 Introduction

Induction is the process by which we obtain laws (or more encompassing - theories) about

the world. The development of a “logic” of induction has been a long standing desideratum of

philosophers, scientists, statisticians and AI researchers ever since the very inception of their

respective fields of inquiry. Such a logic is supposed to provide a “consistent and complete”

methodology on how to derive laws / theories pertaining to a certain world, based on a finite

(but potentially unbounded) set of interactions with it. While the logic of induction itself

is desirable to be “consistent and complete”, the laws and theories produced as a result of the

induction process at any point in time, based on a finite set of interactions, need not necessarily

be a “consistent and / or complete” theory of the world to which they pertain. This would be

too ambitious. Rather, a more realistic requirement is that the theories are to be consistent and

complete in the limit and also in a probabilistic sense. More exactly, given increasingly more

experimental evidence and not terribly unlikely samples, the induction process is increasingly

more likely to rule out inconsistent laws if they have been postulated and increasingly more

likely to postulate the existence of a consistent law that has not been postulated already.

Furthermore, the laws need not be absolute statements but can rather be statements about the

probability that a certain statement is going to hold.

The nature of the laws involved in a theory can be viewed as consisting of essentially two

aspects: the qualitative and the quantitative aspect, respectively. The qualitative aspect is

mainly concerned with the entities among which such a law is postulated and the nature of

their interrelationship. In philosophical parlance, the qualitative aspect of laws and theories is

concerned with ontology. The quantitative aspect, on the other hand, is usually the combination

of two sub-aspects, the numeric and the probabilistic one. The numeric part is concerned with

the quantities involved in the law, while the probabilistic one is concerned with the uncertainties

associated with the law. Very often these two sub-aspects are entangled, for example in the

simple case of the normal distribution the mean stands for the numeric sub-aspect of a certain

quantity, while the variance represents the uncertainty sub-aspect.

Once the qualitative aspect of a certain law is established then the quantitative (numer-

www.manaraa.com

78

ical + uncertainty) aspect becomes the subject of experimental science and statistics. The

process which produces the qualitative aspect of laws (i.e., ontology learning), is a somewhat

less developed field. A solution to the inductive problem however, requires addressing both

the qualitative and quantitative aspect. In other terms, all aspects of hypothesis generation

and hypothesis testing should be coped with. While hypothesis testing is nicely handled by

statistics, the hypothesis generation process and especially its qualitative aspect are in need of

more investigation.

In this paper we focus on the qualitative part of a theory, namely ontology. We attempt to

identify a set of fundamental structural elements in terms of which the structure of a theory can

be decomposed and whose invention should be targeted by the structural induction process. In

the general case there is an infinity of possible types of laws that we can postulate as holding

within a theory of the world. We seek a finite and minimalistic set of fundamental structural

elements that will allow us to express any set of laws in terms of them. Such a set will render

induction more tractable as at any step we will have to pick from a finite set of possible

constructs rather than an infinite one.

Solutions to the full blown induction problem have already been proposed, under the Com-

putationalistic Assumption, in [16], [17], [15], [7]. Computationalism (a.k.a. Church-Turing

thesis) assumes that any theory can be described by a Turing machine, and quite convincing

arguments have been made in this direction [18], [2] and references therein. In this paper we

also embrace the Computationalistic Assumption as the above-mentioned authors. However,

rather than using the Turing machine in order to investigate the problem of induction we will

use the alternative, yet equivalent, mechanism of generative grammars. Such a change is moti-

vated by the relative opacity of Turing machines from the structural point of view. We desire a

model that decomposes into parts and where the final outcome can be viewed as a composition

of these parts. For such a purpose generative grammars are a good candidate, but not the only

one. For example lambda calculus is a possible alternative which is Turing equivalent while

being compositional at the same time (see [10] for some work in this direction). While differ-

ent on the surface, various compositional models are in essence very similar and the obtained

www.manaraa.com

79

results in one framework can easily be ported among them, therefore we will limit ourselves to

the case of generative grammars.

The rest of the paper is organized as follows: First we examine some of the intuitions behind

the structural induction process. Then we identify the fundamental structural elements for

various classes of grammars yielding a set of normal form theorems whose persistent elements are

Abstraction (grouping similar entities under one overarching category) and Super-Structuring

(grouping into a unit topologically close entities - in particular spatio-temporally close). We

then proceed with a discussion and interpretation of the theoretical results in a larger context

along with a few more interesting theoretical results. Finally, we conclude.

5.2 Compositionality and Structural Induction

Induction aims at finding patterns (laws) from a stream of observations, sometimes lumped

together into more encompassing theories. For the sake of simplicity we will only address

the problem of observational studies in this paper, and set aside for future the more general

problem where actions are also available to the agent. One way to encode the knowledge that is

extracted from the stream of observations is to use a Turing machine. Therefore a way to solve

the induction problem is to enumerate all the Turing machines (dovetailing in order to cope

with the countable infinity) and pick one that strikes a good balance between the predictability

(of the finite experience stream) and size [16], [7]. An alternative to picking a certain model

as our current model of the world is the Bayesian paradigm which attempts to use all models

along with a weight that measures, again, the trade-off between the predictability (of the finite

experience stream) and size of the model [7]. In the Bayesian paradigm, prediction is done by

take a weighted vote among the predictions of all the models with their respective weights.

However, by examining the way people try to address the problem of induction it seems

that they tend to invent an increasing set of concepts which serve as stepping stones in the

building of increasingly more complicated theories and concepts. This buildup of increasing

complexity by gradually aggregating a few “less complex” entities into more complicated ones

is called compositionality. In contrast to the Turing Machines enumeration approach to in-

www.manaraa.com

80

duction the compositional approach exhibits at least two advantages: better transparency and

computational speedup. Transparency is due to the decomposability aspect while computa-

tional speedup is obtained by the possibility to reuse already made “less complex” entities

when building the bigger ones as opposed to starting afresh every time as it is the case with the

Turing Machines enumeration. In quite a general sense compositionality is the key to turning

an Exhaustive Enumeration solution into a Dynamic Programming one. Another important

advantage of compositionality, from the point of view of induction is that it allows for a more

data driven approach. Exhaustive Enumeration in the inductive setup is basically a Generate

and Test kind of approach where we take the effort to generate the a full blown hypothesis, test

it on the data and then repeat the process for zero. Having a compositional model allows us to

assess the usefulness of various parts only once and and the reuse them in bigger components

much like in Dynamic Programming or its heuristics based generalization - A∗.

Structural Induction can be characterized mainly along the following lines: We start with

a stream of observations and aim at finding patterns (laws) which “explain” it, which we po-

tentially collated into more encompassing theories. The patterns found are not necessarily

described solely in terms of the input observations, but may also use additional “internal vari-

ables”. The role of these internal variables is to simplify explanation. The observables and the

internal variables in terms of which the explanation is offered constitute the ontology1 - i.e., the

set of concepts and their interrelationships deemed relevant for the agent’s theorizing about its

experiences. Structural induction aims at finding appropriate internal variables and patterns

among them - or equivalently learning (inducing) the ontology. Each found pattern can be in

turn labeled as an “internal variable” thus bootstrapping the process. New patterns can then in

turn be formed out of these internal variables which stand for other patterns, thus allowing to

build increasingly more complicated patterns while maintaining local simplicity. Each pattern
1The ontology in this case does not have any claims of universality as it is often the case in the philosophical

literature. Rather is just a set of concepts and interrelations among them that afford the expression of theories.
These concepts may change during the life of the agent and they are void of any metaphysical claims. Thus our
ontology is situated at the epistemological rather than the metaphysical level. A more appropriate name for it
would probably be epiology in order to distinguish it from the philosophical usage which implies a metaphysical
level. However in the Artificial Intelligence literature the term is mostly used in the epistemological sense
anyways, even though seldom explicitly stated, and this is the way we will use it too.

www.manaraa.com

81

is formed out of a small 2 set of variables which can stand in turn for more complicated patterns

and so on and so forth. Such bootstrapping allows for the buildup of indeed very complicate

patterns based on very simple rules. (e.g., - fractals generated by rewriting systems).

The invention of internal variables to aid the explanation process is not without perils.

Arbitrary invention may lead to internal variables such as the one which stands for the truth

value of the sentence: “In heaven, if it rains, do the angels get wet or not?”. Or the perhaps the

even more famous, yet quantitative: “How many angels can fit on the head of a pin?”. Sentences

of these type, while perfectly valid from the syntactic point of view are problematic when we

attempt to determine their truth or quantitative values respectively, based on the experience

data. The need to expose these types of problematic contraptions led to the demarcation

problem in philosophy at the beginning of the twentieth century (e.g., [12]). The main intuition

behind a demarcation criterion between “non-sensical” internal variables such as the above-

mentioned and “reasonable” ones is that: If the world will look the same from the point of

view of the set of potential experiences regardless of the value of the internal variable then the

variable is non-sensical (or in other worlds independent of the data - “senses”).

One solution for the demarcation criteria calls for tagging as non-scientific all sentences /

”internal variables” , that do not have any direct connection to experience. This is a radical

interpretation of an idea that runs back in the history of Philosophy from Positivism through

the Empiricists and Scholastics down to at least to Aristotle’s “Nihil est in intellectu quod non

prius fuerit in sensu”3. The direct connection requirement restricted the no-nonsense theories to

those formed out empirical laws [1] (i.e, laws that relate only measurable quantities) . However

a good deal of scientists including Albert Einstein, while sympathetic to the positivists ideas,

were successfully using hidden variables in their theories, which have only an indirect connection

to observations. Such odds led to many revisions of the positivists doctrine culminating with

Carnap’s full blown re-introduction of hidden variables - in An Introduction to the Philosophy

of Science [3]. Hidden variables allow for more compact explanations being able sometimes
2or at the very least finite
3There is nothing in the mind that was not previously in the senses - this is also known as the tabula rasa

or blank slate hypothesis

www.manaraa.com

82

even to turn an infinite representation into a finite one as it is the case with Hidden Markov

Models (HMMs) versus Markov Models of depth k (MM(k)), or in the deterministic case Finite

State Machines versus Finite History Lookup Tables.

In the remainder of this paper we will use the Turing equivalent, yet compositional, model

of Generative Grammars. We show that in order for our models of the world to be Turing

equivalent we need to allow for hidden variables. Furthermore based on our characterization

theorems we identify the two fundamental structural elements that postulate hidden variables:

Reverse Abstraction and Reverse SuperStructuring. These two along with their direct duals

Abstraction and SuperStructuring, will be enough to characterize the full-blown Turing equiv-

alent formalism of Generative Grammars.

5.3 Abstraction SuperStructuring Normal Forms

In this section we prove the main results of the paper: a series of characterization theorems

of two main classes of Generative Grammars: Context-Free and General Grammars, in terms

of a small set of fundamental structural elements. We start by recapitulating the definitions

and notations for generative grammars and the theorem that claims the equivalence between

Generative Grammars and Turing Machines. We then draw the connections between the in-

duction process and the formalism of generative grammars and examine the main motivation

for trying to find a minimalistic set of fundamental structural elements. Finally, we prove the

main results and make some remarks along the way.

5.3.1 Generative Grammars and Turing Machines

Definitions (Grammar) A (generative) grammar is a quadruple (N,T, S,R) where N and

T are disjoint finite sets called NonTerminals and Terminals, respectively, S is a distinguished

element from N called the start symbol and R is a set of rewrite rules (a.k.a. production rules)

of the form (l → r) where l ∈ (N ∪ T)∗N(N ∪ T)∗ and r ∈ (N ∪ T)∗. Additionally, we call

l the left hand side (lhs) and r the right hand side (rhs) of the rule (l → r). The language

generated by a grammar is defined by L(G) = {w ∈ T ∗|S ∗→ w} where ∗→ stands for the

www.manaraa.com

83

reflexive transitive closure of the rules from R. Furthermore +→ stands for the transitive (but

not reflexive) closure of the rules from R. We say that two grammars G,G′ are equivalent if

L(G) = L(G′). The steps contained in a set of transitions α ∗→ β is called a derivation. If

we want to distinguish between derivations in different grammars we will write α ∗→G β or

mention it explicitly. We denote by ε the empty string in the language. We will sometimes use

the shorthand notation l→ r1|r2|...|rn to stand for the set of rules {l→ ri}i=1,n. See e.g., [13]

for more details and examples.

Definition (Grammar Types) Let G = (N,T, S,R) be a grammar. Then

1. G is a regular grammar (REG) if all the rules (l → r) ∈ R have the property that

l ∈ N and r ∈ (T ∗ ∪ T ∗N).

2. G is context-free grammar (CFG) if all the rules (l→ r) ∈ R have the property that

l ∈ N .

3. G is context-sensitive grammar (CSG) if all the rules (l→ r) ∈ R have the property

that they are of the form αAβ → αγβ where A ∈ N and α, β, γ ∈ (N ∪ T)∗ and γ 6= ε.

Furthermore if ε is an element of the language one rule of the form S → ε is allowed and

furthermore the restriction that S does not appear in the right hand side of any rule is

imposed. We will call this last sentence the ε−Ammendment.

4. G is general grammar (GG) if all the rules (l→ r) ∈ R have no additional restrictions.

Theorem 0. The set of General Grammars are equivalent in power with the set of Turing

Machines. That is, for every Turing Machine T there exists a General Grammar G such that

L(G) = L(T) and viceversa.

Proof. The proof of this theorem is a well known result. See for example [13]. �

Because of this theorem we can concentrate on the Generative Grammar formalism which

is compositional as opposed to using the rather opaque framework of Turing Machines. Similar

results of equivalence exists for transductive4 versions of Turing machines and grammars as
4where an output string y is computed as a function of the input string w rather than just attempting to

recognize whether w belongs to the language

www.manaraa.com

84

opposed to the recognition versions outlined in this subsection, see e.g., [2] and references

therein. For the sake of simplicity, but without loss of generality - as the results are easily

portable, we will concentrate on the recognition setup rather than the transductive one.

5.3.2 Structural Induction, Generative Grammars and Motivation

Before proceeding with the main results of the paper we examine the connections between

the generative grammars setup and our structural induction problem. The terminals in the

grammar formalism denote the set of observables in our induction problem. The NonTerminals

stand for internal variables in terms of which the observations (terminals) are explained. The

“explanation” is given by a derivation of the stream of observations from the initial symbol

S
∗→ w. The NonTerminals that appear in the derivation are the internal variables in terms of

which the surface structure given by the stream of observations w is explained. Given such a

correspondence, the task of Structural Induction is to find an appropriate set of NonTerminalsN

and a set of rewrite rules R that will allow us to derive (explain) the input stream of observations

w from the initial symbol S. The process of Structural Induction may invent a new rewrite

rule l → r under certain conditions and this new rule may contain in turn new NonTerminals

(internal variables) which are added to the already existing ones. The common intuition is

that l is a simpler version of r, as the final goal is to reduce w to S. The terminals constitute

the input symbols (standing for observables), the NonTerminals constitute whatever additional

“internal” variables we may feel are needed, the rewrite rules describe their interrelationship

and altogether they constitute the ontology.

The correspondence between the terms used in Structural Induction and Generative Gram-

mars is outlined in Table 5.1.

While Structural Induction may invent any kind of rewrite rule of the form l→ r, potentially

introducing new NonTerminals, the problem is that there are infinitely many such rules that

we could invent at any point in time. In order to make the process more well defined we

ask whether it is possible to find a set of fundamental structural elements which is finite and

minimalistic, and if possible quite intuitive such that all the rules (or more precisely sets of

www.manaraa.com

85

Structural Induction Generative Grammar
Observables Terminals T

Internal Variables NonTerminals N
Law / Theory production rule(s) l→ r

Ontology Grammar G
Observations Stream word w

Explanation Derivation S ∗→ w

Partial Explanation Derivation α ∗→ w

Table 5.1 Correspondence between Structural Induction and Generative
Grammars

rules) can be re-expressed in terms of these elements. This would establish a normal form in

terms of a finite set of elements and then the problem of generating laws will be reduced to

making appropriate choices from this set without the danger of loosing completeness.

In the next subsection we will attempt to decompose the rules l→ r into a small finite set

of fundamental structural elements which will allow us to design better structure search mech-

anisms. Two structural elements stand out across our various results: Abstraction (grouping

similar entities under one overarching category) and Super-Structuring (grouping into one unit

topologically close entities).

5.3.3 ASNF Theorems

Issue (ε − Construction). In the rest of the paper we will prove some theorems that

impose various sets of conditions on a grammar G in order for the grammar to be considered in

a certain Normal Form. If ε ∈ L(G) however, we will allow two specific rules of the grammar

G to be exempted from these constraints and still consider the grammar in the Normal Form.

More exactly if ε ∈ L(G) and given a grammar G′ such that L(G′) = L(G\{ε}) and G′ =

(N ′, T, S′, R′) is in a certain Normal Form then the grammar G = (N∪{S}, T, S,R = R′∪{S →

ε, S → S′}) where S /∈ N ′ will also be considered in that certain Normal Form despite the fact

that the two productions {S → ε, S → S′} may violate the conditions of the Normal Form.

These are the only productions that will be allowed to violate the Normal Form conditions.

Note that S is a brand new NonTerminal and does not appear in any other productions aside

www.manaraa.com

86

from these two. Without loss of generality we will assume in the rest of the paper that ε /∈ L(G).

This is because if ε ∈ L(G) we can always produce using the above-mentioned construction a

grammar G′′ that is in a certain Normal Form and L(G′′) = L(G′) from a grammar G′ that is

in that Normal Form and satisfies L(G′) = L(G\{ε}). We will call the procedure just outlined

the ε− Construction.

Furthermore we will call the following statement the ε−Ammendment: LetG = (N,T, S,R)

be a grammar, if ε is an element of the language L(G) one rule of the form S → ε is allowed

and furthermore the restriction that S does not appear in the right hand side of any rule is

imposed.

First we prove a weak form of the Abstraction SuperStructuring Normal Form for Context

Free Grammars.

Theorem 1 (Weak-CFG-ASNF). Let G = (N,T, S,R), ε /∈ L(G) be a Context Free

Grammar. Then there exists a Context Free Grammar G′ such that L(G) = L(G′) and G′

contains only rules of the following type:

1. A→ B

2. A→ BC

3. A→ a

Proof . Since G is a CFG it can be written in the Chomsky Normal Form [13]. That is, such

that it contains only productions of the forms 2 and 3. If ε ∈ L(G) a rule of the form S → ε

is allowed and S does not appear in the rhs of any other rule (ε − Ammendment). Since we

have assumed that ε /∈ L(G) we do not need to deal with the ε−Ammendment and therefore

we proved the theorem.

�

Remarks.

1. We will call the rules of type 1 Renamings (REN).

2. We will call the rules of type 2 SuperStructures (SS) or compositions.

www.manaraa.com

87

3. The rules of the type 3 are just convenience renamings of observables into internal vari-

ables in order to uniformize the notation and we will call them Terminal (TERMINAL).

We are now ready to prove the the Weak ASNF theorem for the general case.

Theorem 2 (Weak-GEN-ASNF). Let G = (N,T, S,R), ε /∈ L(G) be a General (unre-

stricted) Grammar. Then there exists a grammar G′ such that L(G) = L(G′) and G′ contains

only rules of the following type:

1. A→ B

2. A→ BC

3. A→ a

4. AB → C

Proof . Every general grammar can be written in the Generalized Kuroda Normal Form(GKNF)

[13]. That is, it contains only productions of the form:

1. A→ ε

2. AB → CD

3. A→ BC

4. A→ a

Assume that we have already converted our grammar in the GKNF. We will prove our claim

in 3 steps.

Step 1. For each {AB → CD} we introduce a new NonTerminal XAB,CD and the following

production rules {AB → XAB,CD} and {XAB,CD → CD} and eliminate the old {AB → CD}

production rules. In this way we ensure that all the rules of type 2 in GKNF have been rewritten

into rules of types 2 and 4 in the GEN-ASNF.

The new grammar generates the same language. To see this let oldG = (NoldG, T, S,RoldG)

denote the old grammar and newG = (NnewG, T, S,RnewG) denote the new grammar. Let

www.manaraa.com

88

γ ∈ N+
oldG and γ

∗→ w be a derivation in oldG. In this derivation we can replace all the uses

of the production AB → CD with the sequence AB → XAB,CD → CD and get a derivation

that is valid in newG, since all the other productions are common between the two grammars.

Thus we have proved that for all γ ∈ N+
oldG we can convert a valid derivation from oldG,

γ
∗→ w into a valid derivation in newG and in particular this is true also for S ∗→ w. Therefore

L(oldG) ⊆ L(newG). Conversely, let γ ∈ N+
oldG and γ ∗→ w be a valid derivation in newG then

whenever we use the rule AB → XAB,CD in this derivation γ
∗→ αABβ → αXAB,CDβ

∗→ w

let γ ∗→ αABβ → αXAB,CDβ
∗→ δXAB,CDη → δCDη

∗→ w be the place where the XAB,CD

that occurs between α and β is rewritten (used in the lhs of a production, even if it rewrites

to the same symbol) for the first time. Then necessarily the XAB,CD → CD rule is the

one that applies since it is the only one that has XAB,CD in the lhs. Furthermore, as a

consequence of Lemma 1 we have that α ∗→ δ and β
∗→ η are valid derivations in newG.

Therefore we can bring the production XAB,CD → CD right before the use of AB → XAB,CD

as follows γ ∗→ αABβ → αXAB,CDβ → αCDβ
∗→ δCDβ

∗→ δCDη
∗→ w and still have a

valid derivation in newG. We can repeat this procedure for all places where rules of the form

AB → XAB,CD appear. In this modified derivation we can replace all the uses of the sequence

AB → XAB,CD → CD with the production AB → CD and obtain a derivation that is valid

in oldG since all the other productions are common between the two grammars. Thus we have

proved that for all γ ∈ N+
oldG we can convert a valid derivation from newG ,γ ∗→ w into a

valid derivation in oldG and in particular this is true also for S ∗→ w since S ∈ N+
oldG, and

therefore L(newG) ⊆ L(oldG). Therefore we have proved that the grammars are equivalent,

i.e., L(oldG) = L(newG).

Step 2. Returning to the main argument, so far our grammar has only rules from Weak-

GEN-ASNF safe for the ε-productions A → ε. Next we will eliminate ε-productions A → ε in

two steps. First for each A → ε we introduce a new NonTerminal XA,E and the productions

XA,E → E and E → ε and eliminate A → ε, where E is a distinguished new NonTerminal

(that will basically stand for ε internally). This insures that we have only one ε-production,

namely E → ε and E does not appear on the lhs of any other production and also that all the

www.manaraa.com

89

rules that rewrite to E are of the form A→ E.

The new grammar generates the same language. We will use a similar proof technique as

in the previous step. Let oldG = (NoldG, T, S,RoldG) denote the old grammar and newG =

(NnewG, T, S,RnewG) denote the new grammar. Let γ ∈ N+
oldG and γ

∗→ w be a derivation in

oldG. In this derivation we can replace all the uses of the production A→ ε with the sequence

XA,E → E → ε and get a derivation that is valid in newG, since all the other productions are

common between the two grammars. Thus we have proved that for all γ ∈ N+
oldG we can convert

a valid derivation from oldG ,γ ∗→ w into a valid derivation in newG and in particular this is

true also for S ∗→ w, therefore L(oldG) ⊆ L(newG). Conversely, let γ ∈ N+
oldG and γ

∗→ w

be a valid derivation in newG then whenever we use the rule XA,E → E in this derivation

γ
∗→ αXA,Eβ → αEβ

∗→ w let γ ∗→ αXA,Eβ → αEβ
∗→ δEη → δη

∗→ w be the place where the

E that occurs between α and β is rewritten(used in the lhs of a production, even if it rewrites to

the same symbol) for the first time. Then necessarily the E → ε rule is the one that applies since

it is the only one that has E in the lhs. Furthermore, as consequence of Lemma 1 we have that

α
∗→ δ and β ∗→ η are valid derivations in newG. Therefore we can bring the production E → ε

right before the use of XA,E → E as follows γ ∗→ αXA,Eβ → αEβ → αβ
∗→ δβ

∗→ δη
∗→ w

and still have a valid derivations in newG. We can repeat this procedure for all places where

rules of the form XA,E → E appear. In this modified derivation we can replace all the uses

of the sequence XA,E → E → ε with the production A → ε and obtain a derivation that is

valid in oldG since all the other productions are common between the two grammars. Thus we

have proved that for all γ ∈ N+
oldG we can convert a valid derivation from newG, γ ∗→ w into

a valid derivation in oldG and in particular this is true also for S ∗→ w since S ∈ N+
oldG, and

therefore L(newG) ⊆ L(oldG). Therefore we have proved that the grammars are equivalent,

i.e., L(oldG) = L(newG).

Step 3. To summarize: the new grammar has only rules of the Weak-GEN-ASNF type,

safe for the production E → ε which is the only production that has E in the lhs and there

is no other rule that has ε on the rhs (strong-uniqueness) and furthermore the only rules that

contain E in the rhs are of the form A→ E (only renamings to E).

www.manaraa.com

90

We will eliminate the ε-production E → ε as follows: Let {Ai → E}i=1,n be all the pro-

ductions that have E on the rhs. For all NonTerminals X ∈ N ∪ T introduce productions

{XAi → X}i=1,n and {AiX → X}i=1,n and eliminate {Ai → E}i=1,n, furthermore we also

eliminate E → ε.

The new grammar generates the same language. We will use a similar proof technique as

in the previous step. Let oldG = (NoldG, T, S,RoldG) denote the old grammar and newG =

(NnewG, T, S,RnewG) denote the new grammar. Let γ ∈ N+
oldG and γ

∗→ w be a derivation in

oldG. Then whenever we use a rule of the form Ai → E in this derivation γ ∗→ αAiβ → αEβ
∗→

w let γ ∗→ αAiβ → αEβ
∗→ δEη → δη

∗→ w be the place where the E that occurs between α

and β is rewritten(used in the lhs of a production, even if it rewrites to the same symbol) for

the first time. Then necessarily the E → ε rule is the one that applies since it is the only one

that has E in the lhs. Furthermore, as a consequence of Lemma 1 we have that α ∗→ δ and

β
∗→ η are valid derivations in oldG. Therefore we can bring the production E → ε right before

the use of Ai → E as follows γ ∗→ αAiβ → αEβ → αβ
∗→ δβ

∗→ δη
∗→ w and still have a valid

derivations in oldG. We can repeat this procedure for all places where rules of the form Ai → E

appear. In this modified derivation we can replace all the uses of the sequence Ai → E → ε

with the production XAi → X if α 6= ε and XAi → X if β 6= ε and obtain a derivation that

is valid in newG since all the other productions are common between the two grammars, (e.g.,

if α 6= ε, α = α1X replace αAiβ = α1XAiβ → α1XEβ → α1Xβ = αβ which is valid in oldG

with αAiβ = α1XAiβ → α1Xβ = αβ which is valid in newG and similarly for β 6= ε). In this

way since all the other productions are common between the two grammars we can convert a

derivation γ ∗→oldG w into a derivation γ ∗→newG w. Note that it is not possible for both α and

β to be equal to ε because this will imply that the derivation γ ∗→ w is γ ∗→ Ai → E → ε which

contradicts the hypothesis that w ∈ T+. Thus we have proved that for all γ ∈ N+
oldG we can

convert a valid derivation from oldG, γ ∗→ w into a valid derivation in newG and in particular

this is true also for S ∗→ w since S ∈ N+
oldG, and therefore L(oldG) ⊆ L(newG).

Conversely, let γ ∈ N+
oldG and γ

∗→ w be a derivation in newG . In this derivation we can

replace all the uses of the production XAi → X with the sequence Ai → E → ε and get a

www.manaraa.com

91

derivation that is valid in oldG since all the other productions are common between the two

grammars (e.g., we replace αAiβ = α1XAiβ → α1Xβ = αβ which is valid in newG with

αAiβ = α1XAiβ → α1XEβ → α1Xβ = αβ which is valid in oldG). We proceed similarly

with the productions of the form AiX → X and replace them with the sequence Ai → E → ε

and get a derivation that is valid in oldG. Thus we have proved that for all γ ∈ N+
oldG we can

convert a valid derivation from newG, γ ∗→ w into a valid derivation in oldG and in particular

this is true also for S ∗→ w, therefore L(newG) ⊆ L(oldG). Hence we have proved that the

grammars are equivalent, i.e., L(oldG) = L(newG).

�

Lemma 1. Let G = (N,T, S,R) be a grammar and let αµβ ∗→ δµη, µ ∈ (N ∪ T)+ a

valid derivation in G that does not rewrites the µ (uses productions whose lhs match any part

of µ even if it rewrites to itself), occurring between α and β, then α
∗→ δ, β ∗→ η are valid

derivations in G.

Proof. Because αµβ ∗→ δµη does not rewrites any part of µ (even to itself) it follows that

the lhs of any production rule that is used in this derivation either matches a string to the left

of µ or to the right of µ. If we start from α and use the productions that match to the left

in the same order as in αXβ
∗→ δXη then we necessarily get α ∗→ δ, a valid derivation in G.

Similarly, by using the productions that match to the right of µ we get β ∗→ η valid in G.

�

Remark.

1. We will call the rules of type 4 Reverse SuperStructuring (RSS).

In the next theorem we will strengthen our results by allowing only the Renamings (REN) to

be non unique. First we introduce more exactly what we mean by uniqueness and then we

proceed to state and prove a lemma that will allow us to strengthen the Weak-GEN-ASNF by

imposing uniqueness on all the productions safe renamings.

Definition (strong-uniqueness). We will say that a production α→ β respects strong-

uniqueness if this is the only production that has the property that it has α in the lhs and also

this is the only production that has β on the rhs.

www.manaraa.com

92

Lemma 2. Let G = (N,T, S,R), ε /∈ G a grammar such that all its productions are of the

form:

1. A→ B

2. A→ ζ , ζ /∈ N

3. ζ → B , ζ /∈ N

Modify the the grammar into a new grammar G′ = (N ′, T, S′, R′)obtained as follows:

1. Introduce a new start symbol S′ and the production S′ → S.

2. For each ζ /∈ N that appears in the rhs of one production in G let {Ai → ζ}i=1,n all the

the productions that contain ζ in the rhs of a production. Introduce a new NonTerminal

Xζ and the productions Xζ → ζ and {Ai → Xζ}i=1,n and eliminate the old productions

{Ai → ζ}i=1,n.

3. For each ζ /∈ N that appears in the lhs of one production in G let {ζ → Bj}j=1,m all

the the productions that contain ζ the lhs of a production. Introduce a new NonTerminal

Yζ and the productions ζ → Yζ and {Yζ → Bj}j=1,m and eliminate the old productions

{ζ → Bj}j=1,m.

Then the new grammar G′ generates the same language as the initial grammar G and all the

productions of the form A → ζ and ζ → B , ζ /∈ N respect strong-uniqueness. Furthermore if

the initial grammar has some restrictions on the composition of the ζ /∈ N that appears in the

productions of type 2 and 3, they are still maintained since ζ is left unchanged in the productions

of the new grammar and the only other types of productions introduced are Renamings which

do not belong to either type 2 or 3.

Proof. To show that the two grammars are equivalent we will use a similar proof technique

as in the previous theorem. Let γ ∈ N+ and γ
∗→ w be a derivation in G. In this derivation

we can replace all the uses of the production Ai → ζ with the sequence Ai → Xζ → ζ and

the uses of the production ζ → Bj with the sequence ζ → Yζ → Bj and get a derivation that

www.manaraa.com

93

is valid in G, since all the other productions are common between the two grammars. Thus

we have proved that for all γ ∈ N+ we can convert a valid derivation from G, γ ∗→ w into a

valid derivation in G′ and in particular this is true also for S ∗→G w, which can be converted

into S
∗→G′ w and which furthermore can be converted into S′ → S

∗→G′ w and therefore

L(G) ⊆ L(G′).

Conversely, let γ ∈ N+ and γ
∗→ w be a valid derivation in G′ then whenever we use the

rule Ai → Xζ in this derivation γ
∗→ αAiβ → αXζβ

∗→ w let γ ∗→ αAiβ → αXζβ
∗→ δXζη →

δζη
∗→ w be the place where the Xζ that occurs between α and β is rewritten (used in the lhs

of a production, even if it rewrites to the same symbol) for the first time. Then necessarily the

Xζ → ζ rule is the one that applies since it is the only one that has Xζ in the lhs. Furthermore,

as consequence of Lemma 1 we have that α ∗→ δ and β
∗→ η are valid derivations in G′.

Therefore we can bring the production Xζ → ζ right before the use of Ai → Xζ as follows

γ
∗→ αAiβ → αXζβ → αζβ

∗→ δζβ
∗→ δζη

∗→ w and still have a valid derivation in G′. We

can repeat this procedure for all places where rules of the form Ai → Xζ appear. Similarly

for the uses of the productions of the type ζ → Yζ in a derivation γ
∗→ w we can bring the

production that rewrites Xζ (Yζ → Bj) right after as follows: change γ ∗→ αζβ → αYζβ
∗→

δYζη → δBjη
∗→ w into γ

∗→ αζβ → αYζβ → αBjβ
∗→ δBjβ

∗→ δBjη
∗→ w, because from

Lemma 1 we have that α ∗→ δ and β
∗→ η. We can repeat this procedure for all places where

rules of the form ζ → Xζ appear. In the new modified derivation we can replace all the uses of

the sequence Ai → Xζ → ζ with the production Ai → ζ and the sequence ζ → Yζ → Bj with

the production ζ → Bj and obtain a derivation that is valid in G since all the other productions

are common between the two grammars. Thus, we have proved that for all γ ∈ N+ we can

convert a valid derivation from G′ ,γ ∗→ w into a valid derivation in G. For a derivation and

S′
∗→G′ w we have that necessarily S′ → S

∗→G′ w since S′ → S is the only production that

rewrites S′ but since S ∈ N+, it follows that we can use the previous procedure in order to

convert S ∗→G′ w into a derivation S ∗→G w which proves that L(G′) ⊆ L(G). Hence, we have

proved that the grammars are equivalent, i.e., L(G) = L(G′).

It is obvious that all the productions of the form A→ ζ and ζ → B , ζ /∈ N respect strong-

www.manaraa.com

94

uniqueness. Furthermore if the initial grammar has some restrictions on the composition of

the ζ /∈ N that appear in the productions of type 2 and 3 they are still maintained since ζ is

left unchanged in the productions of the new grammar and the only other types of productions

introduced are Renamings which do not belong to either type 2 or 3.

�

By applying Lemma 2 to the previous two Weak-ASNF theorems we can obtain Strong

versions of these theorems which enforce strong-uniqueness in all the productions safe the

Renamings.

Theorem 3 (Strong-CFG-ASNF). Let G = (N,T, S,R), ε /∈ L(G) be a Context Free

Grammar. Then there exists a Context Free Grammar G′ such that L(G) = L(G′) and G′

contains only rules of the following type:

1. A→ B

2. A→ BC - and this is the only rule that has BC in the rhs and this is the only rule that

has A in the lhs (strong-uniqueness).

3. A → a - and this is the only rule that has a in the rhs and this is the only rule that has

A in the lhs (strong-uniqueness).

Theorem 4 (Strong-GEN-ASNF). Let G = (N,T, S,R), ε /∈ L(G) be a general (unre-

stricted) grammar. Then there exists a grammar G′ such that L(G) = L(G′) and G′ contains

only rules of the following type:

1. A→ B

2. A→ BC - and this is the only rule that has BC in the rhs and this is the only rule that

has A in the lhs (strong-uniqueness).

3. A → a - and this is the only rule that has a in the rhs and this is the only rule that has

A in the lhs (strong-uniqueness).

4. AB → C - and this is the only rule that has C in the rhs and this is the only rule that

has AB in the lhs (strong-uniqueness).

www.manaraa.com

95

Remark. After enforcing strong uniqueness the only productions that contain choice are those

of type 1 - Renamings(REN).

Given that we proved the main theorem we proceed in the next section to introduce the

concept of abstraction and prove some additional results.

5.4 Additional concepts and results

5.4.1 Abstractions And Reverse Abstractions

Despite the fact that the names of the theorems contain the word Abstraction we have not

shown yet where the Abstractions are. They are buried into the relations among Renamings

and their unearthing is the role of this subsection.

Definitions (Abstractions Graph). Given a grammar G = (N,T, S,R) which is in an

ASNF from any of the Theorems 1 - 4 we call an Abstractions Graph of the grammar G and

denote it by AG(G) a Directed Graph G = (N,E) whose nodes are the NonTerminals of the

grammar G and whose edges are constructed as follows: we put a directed edge starting from

A and ending in B iff A → B is a production that occurs in the grammar. Without loss of

generality we can assume that the graph has no self loops, i.e., edges of the form A→ A, as if

this is the case these productions can be eliminated from the grammar without changing the

language. In such a directed graph a node A has a set of out-edges, the edges that point out

from it, and a set of in-edges, the edges that point into it. We will call a node A along with

its out-edges the Abstraction at A and denote it ABS(A) = {A,OEA = {(A,B)|(A,B) ∈ E}}.

Similarly, we will call a node A along with its in-edges the Reverse Abstraction at A and denote

it RABS(A) = {A, IEA = {(B,A)|(B,A) ∈ E}}.

5.4.2 Minimality

We can ask the question whether we can find even simpler types of structural elements that

can generate the full power of Turing Machines. Two of our operators, RSS and SS require

that the size of the production (|lhs|+ |rhs|) is 3. We can ask whether we can do it with size

2. This is answered negatively by the following proposition.

www.manaraa.com

96

Proposition (Minimality) If we impose the restriction that |lhs| + |rhs| ≤ 2 for all the

productions then we can only generate languages that are finite sets Terminals, with the possible

addition of the empty string ε.

Proof . The only possible productions under this constraint are:

1. A→ a

2. A→ ε

3. A→ B

4. AB → ε

5. Aa→ ε

All the derivations that start from S, either keep on rewriting the current NonTerminal, because

there is no production which increases the size, or rewrite the current NonTerminal into a

Terminal or ε.

�

Another possible question to ask is whether we can find a smaller set of structural elements

set or at least equally minimal. The following theorem is a known result by Savitch [14].

Theorem 5 (Savitch Alternative). (Savitch 1973 [14]) Let G = (N,T, S,R), ε /∈ L(G)

be a General Grammar then there exists a grammar G′ such that L(G) = L(G′) and G′ contains

only rules of the following type:

1. AB → ε

2. A→ BC

3. A→ a

The Savitch theorem has three types of rules TERMINAL (type 3), SS (type 2) and ANNIHI-

LATE2 (type 1). However no strong-uniqueness has been enforced and were it to be enforced

then one more type of rule, REN will be needed. Furthermore if we would not insist on unique-

ness all the Renamings in the ASNF could be eliminated too (Renamings elimination is a well

www.manaraa.com

97

known technique in the theory of formal languages [13]) . However this will make it very diffi-

cult to make explicit the Abstractions. Therefore it can be argued that ASNF and the Savitch

Normal Form have the same number of fundamental structural elements with the crucial dif-

ference between the two being the replacement of the RSS with ANNIHILATE2. The Reverse

SuperStructuring seems a more intuitive structural element however, at least from the point

of view of this paper.. Next we present for completeness the version of Savitch theorem where

strong-uniqueness is enforced for rules of type 2 and 3.

Theorem 6 (Strong-GEN-ASNF-Savitch). Let G = (N,T, S,R), ε /∈ L(G) be a Gen-

eral Grammar then there exists a grammar G′ such that L(G) = L(G′) and G′ contains only

rules of the following type:

1. A→ B

2. A→ BC - and this is the only rule that has BC in the rhs and this is the only rule that

has A in the lhs. (strong-uniqueness)

3. A → a - and this is the only rule that has a in the rhs and this is the only rule that has

A in the lhs. (strong-uniqueness)

4. AB → ε - and this is the only rule that has AB on the lhs. (uniqueness)

Proof. By the original Savitch theorem [14] any grammar can we written such that it only has

rules of the type

1. AB → ε

2. A→ BC

3. A→ a

The rules of the form AB → ε observe uniqueness by default since the only rules that have

more than one symbol in the lhs are of the form AB → ε.

www.manaraa.com

98

Then we can use the constructions in Lemma 2 on this grammar in order to enforce strong-

uniqueness for SuperStructuring (SS) A → BC and Terminals (TERMINAL) A → a at the

potential expense of introducing Renamings (REN).

�

In conclusion our set of structural elements is quite minimalistic, and based on intu-

itive structural elements. The alternative provided by Savitch theorem is a possible counter-

candidate, but we prefer ASNF for the intuitiveness of the Reverse SuperStructuring.

In the next subsection we will prove two theorems that show that if the grammar is in one

of the Strong-ASNF forms we can order a derivation (explanation) in order to use productions

that grow the size of the intermediate in the first phase and then use only productions that

shrink the size of the intermediate in the second phase followed by rewritings into Terminals

only in the third phase.

5.4.3 Grow & Shrink theorems

Theorem 7. Let G = (N,T, S,R), ε /∈ L(G) be a General Grammar in the Strong-GEN-

ASNF-Savitch, i.e., all the productions are of the following form:

1. A→ B

2. A→ BC - and this is the only rule that has BC in the rhs and this is the only rule that

has A in the lhs. (strong-uniqueness)

3. A→ a - and this is the only rule that has A on the lhs and there is no other rule that has

a on the rhs. (strong uniqueness)

4. AB → ε - and this is the only rule that has AB on the lhs. (uniqueness)

Then for any derivation w such that γ ∗→ w , in G, γ ∈ N+ there exists a derivation γ ∗→ µ
∗→

ν
∗→ w such that µ ∈ N+, ν ∈ N∗ and γ ∗→ µ contains only rules of type 1 and 2 (REN, SS),

µ
∗→ α contains only rules of the type 4 (ANNIHILATE2) and ν

∗→ w contains only rules of

type 3 (TERMINAL).

www.manaraa.com

99

Proof. Based on Lemma 3 (presented next) we can change the derivation γ
∗→ w into a

derivation γ ∗→ ν
∗→ w such that the segment ν ∗→ w contains only rules of type 3 (TERMINAL)

and γ
∗→ ν contains only rules of type 1, 2 or 4 (REN, SS, ANNIHILATE2) . Therefore the

only thing we still have to prove is that we can rearrange γ ∗→ ν into γ ∗→ µ
∗→ ν such that

γ
∗→ µ contains only rules of type 1 or 2 (REN, SS) and µ ∗→ ν contains only rules of the type

4 (ANNIHILATE2).

Let γ ∈ N+, and w such that γ ∗→ ν
∗→ w is a derivation in G , the segment ν ∗→ w

contains only rules of type 3 (TERMINAL) and γ
∗→ α contains only rules of type 1, 2 or 4

(REN, SS, ANNIHILATE2). If the derivation already satisfies the condition of the lemma then

we are done. Otherwise examine in order the productions in γ ∗→ ν from end to the beginning

until we encounter the first rule of type 4: AB → ε that violates the condition required by

the theorem and at least one production of the type 1 or 2 has been used after it (otherwise

we have no violation). More exactly, prior to it only rules of type 1 or 2 were used and at

least one such rule was used. That is γ ∗→ αABβ → αβ
+→ µ′

∗→ ν and only rules of the type

1 or 2 have been used in αβ
+→ µ, and only rules of the type 4 have been used in µ′

∗→ ν.

Because only rules of the type 1 or 2 (which never have more than one symbol in the lhs)

have been used in αβ
+→ µ it follows that there exists µ1, µ2 ∈ N∗such that α ∗→ µ1 and

β
∗→ µ2 and µ = µ1µ2. Therefore we can rearrange the rewriting γ ∗→ αABβ → αβ

+→ µ into

γ
∗→ αABβ

∗→ µ1ABβ
∗→ µ1ABµ2 → µ1µ2 = µ . In this way we have obtained a derivation for

µ in G that violates the conclusion of the lemma in one place less than the initial derivation.

Since there is a finite number of steps in a derivation and therefore a finite number of places

where the constraints can be violated it can be inferred that after a finite number of applications

of the above-described “swapping” procedure we will obtain a derivation which satisfies the rules

of the theorem.

�

Lemma 3. Let G = (N,T, S,R) be a general (unrestricted) grammar that contains only

rules of the form:

1. α→ β, α ∈ N+,β ∈ N∗

www.manaraa.com

100

2. A→ a

Then for any derivation w such that γ ∗→ w , in G, γ ∈ N+ there exists a derivation γ ∗→ ν
∗→ w

such that ν ∈ N+ and γ ∗→ ν contains only rules of type 1 and ν ∗→ w contains only rules of

type 2 (TERMINAL).

Proof. Let w such that γ ∗→ w in G, γ ∈ N+. If the derivation already satisfies the

condition of the lemma then we are done. Otherwise examine in order the productions γ ∗→ w

until we encounter a rule of type , say it is A → a , such that there are still rules of type

1 used after it γ ∗→ αAβ → αaβ
∗→ w. Because none of the rules in the grammar contain

terminals in their lhs it follows that there exists w1, w2 ∈ T ∗ such that α ∗→ w1 and β
∗→ w2

and w = w1aw2. Therefore we can rearrange the rewriting γ
∗→ αAβ → αaβ

∗→ w into

γ
∗→ αAβ

∗→ w1Aβ
∗→ w1Aw2 → w1aw2 = w. In this way we have obtained a derivation for

w in G that violates the conclusion of the lemma in one place less than the initial derivation.

Since there is a finite number of steps in a derivation and therefore a finite number of places

where the constraints can be violated it can be inferred that after finite number of application

of the above-described “swapping” procedure we will obtain a derivation which satisfies the

rules of the lemma.

�

Theorem 8. Let G = (N,T, S,R), ε /∈ L(G) be a General Grammar. Then we can

convert such a grammar into the Strong-GEN-ASNF i.e., such that all the productions are of

the following form:

1. A→ B

2. A→ BC - and this is the only rule that has BC in the rhs and this is the only rule that

has A in the lhs. (strong-uniqueness)

3. A→ a - and this is the only rule that has A on the lhs and there is no other rule that has

a on the rhs. (strong uniqueness)

4. AB → C - and this is the only rule that has C in the rhs and this is the only rule that

has AB in the lhs. (strong-uniqueness)

www.manaraa.com

101

And furthermore for any derivation w such that γ ∗→ w , in G, γ ∈ N+ there exists a derivation

γ
∗→ µ

∗→ ν
∗→ w such that µ ∈ N+, ν ∈ N∗ and γ

∗→ µ contains only rules of type 1 and 2

(REN, SS), µ ∗→ α contains only rules of the type 1, more particularly only Reverse Abstractions

and type 4 (REN(RABS), RSS) and ν ∗→ w contains only rules of type 3 (TERMINAL).

Proof Sketch. By Theorem 6 we can convert the grammar G into a grammar G′ in Strong-

GEN-ASNF-Savitch. Then we can convert such a grammar into a grammar G′′ in Strong-

GEN-ASNF as follows: for all {AiBi → ε}i=1,n introduce new NonTerminals {XAiBi}i=1,n and

add AiBi → XAiBi and XAiBi → E and eliminate the original productions {AiBi → ε}i=1,n.

Furthermore, for all NonTerminals X 6= E in the new grammar, add new NonTerminals XXE ,

XEX and XEE and the production rules XE → XXE , EX → XEX , XXE → X, XEX → X,

EE → XEE and XEE → E. We can easily show using techniques already developed that the

new grammar will generate the same language as the previous one and that it respects the

strong-uniqueness for rules of type 2, 3 and 4.

Furthermore if we take a derivation for a string w in the grammar G′ in the Strong-GEN-

ASNF-Savitch S ∗→G′ w then from Theorem 7 we know that we can convert it into a derivation

that uses first only REN and SS in the phase 1, then only ANNIHILATE2 in phase 2 and

finally only TERMINAL in phase 3. We can take such a derivation and replace the usage

of the ANNIHILATE2 productions in phase 2 with productions as above in order to get a

derivation in G′′. Note that the productions introduced above are meant to transform the

ANNIHILATE2 into rules that follow the Strong-GEN-ASNF, and the only types of rules that

we have introduced are RSS with strong-uniqueness holding and REN of the RABS type. In

this way we have proved the statement of the theorem.

�

We have therefore proved that for each General Grammar G we can transform it both in

a Strong-GEN-ASNF-Savitch and a Strong-GEN-ASNF such that the derivation (explanation

in Structural Induction terminology) of any terminal string w can be organized in three phases

such that: In Phase 1 we use only productions that grow (or leave the same) the size of the

intermediate string; In Phase 2 we use only productions that shrink (or leave the same) the

www.manaraa.com

102

size of the intermediate string and in Phase 3 we use only TERMINAL productions.

Naively, at first sight, it may seem that this is a way to solve the halting problem and there-

fore maybe some mistake has been made in the argument. However this is not the case, as the

key question is when to stop expanding the current string and start shrinking and this problem

still remains. In a certain sense these two theorems are a way to give a clear characterization

of the issue associated with solving the halting problem: namely that of knowing when to stop

expanding. In the case of Grammars in arbitrary forms the issue is a little bit more muddled

as we can have a succession of grow and shrink phases but we have shown that if the form

is constrained in a certain ways then we only need one grow and one shrink. Note also that

during the grow phase in both theorems we are only using context free productions.

So far we have introduced SuperStructuring, Abstraction and related concepts, and proved

various results regarding normal forms, minimality and the grow-shrink forms of derivations

in Grammar terminology. We are now ready to reinterpret them in the language of structural

induction and tie them to related concepts in this more general context.

5.5 Structural Induction and the fundamental structural elements

In this section we will review the Structural Induction process in the light of the concepts

and results obtained for Generative Grammars and discuss the role of each of the operators.

Then we move on to make some more connections with already existing concepts in Statistics

and Philosophy and show how the ASNF affords for very precise characterizations of these

concepts.

In the context of Generative Grammars Structural Induction is concerned with the following

question: Given a sequence of observations w we attempt to find a theory (grammar) that

explains w and simultaneously also the explanation (derivation) S ∗→ w. In a local way we may

think that whenever we have a production rule l→ r that l explains r. In a bottom up - data

driven way we may proceed as follows: First introduce for every Observable a a production

A → a. These are just convenience productions that bring the observables into the realm of

internal variables in order to make everything more uniform. The association is unique (one

www.manaraa.com

103

to one and onto) and once we have done it we can forget about the existence of Observables

(Terminals). This is only the role of the the TERMINAL productions, and for this reason we

will not mention them in future discussions as they are not true structural operations. With

this in mind if we are to construct a theory in the GEN-ASNF we can postulate any of the

following laws:

1. SS - A→ BC - SuperStructuring. Takes two internal variables B and C that occur within

proximity of each other (adjacent) and labels the compound. From now on the shorter

name A can be used instead on the compound. This is the sole role of SuperStructuring -

to give a name to a bigger compound in order to facilitate shorter explanations at latter

stages.

2. ABS - A→ B|C - Abstraction. Makes a name for the occurrence of either of the variables

Bor C. This may allow for the potential bundling of two productions, the first one involv-

ing B and the other one involving C while otherwise being the same, into a production

involving only A. The role of Abstraction is to give a name to a group of entities (we

have chosen two for simplicity) in order to facilitate more general explanations at latter

stages which in turn will produce more compact theories.

3. RSS - AB → C - Reverse SuperStructuring - invent up to two new internal variables

(may also use already existing ones) which if they occur within proximity of each other

together they “explain” the internal variable C.

4. RABS - A→ C, B → C - Reverse Abstraction - invent new internal variables (may also

use already existing ones) such that either of them can “explain” the internal variable C

(we have chosen two variables for simplicity).

In the next subsection we review two possible reasons for creating hidden variables and we

identify them with Reverse Abstraction and Reverse SuperStructuring. Because in our GEN-

ASNF we do not have other types of reasons for creating Hidden Variables as all the other

production introduce convenience renamings only we can infer under the Computationalistic

www.manaraa.com

104

Assumption that these two are the essential reasons for postulating Hidden Variables and any

other reasons must be derivative. This produces a definite structural characterization of the

rationales behind inventing Hidden Variables.

5.5.1 Reasons for postulating Hidden Variables

There are at least two types of reasons for creating Hidden Variables:

1. (OR type) - [multiple alternative hidden causes] The OR type corresponds to the case

when some visible effect can have multiple hidden causes H1→ Effect, H2→ Effect .

This case corresponds in our formalism to the notion of Reverse Abstraction. One typical

example of this is: The grass is wet, hence either it rained last night or the sprinkler was

on. In the Statistical literature the models that use these types of hidden variables are

known as mixture models [9].

2. (T-AND type) - [multiple concurrent hidden causes] The T-AND type, i.e., topolog-

ical AND type, of which the AND is a particular case. This corresponds to the case

when one visible effect has two hidden causes that both have to occur within proximity

(hence the Topological prefix) of each other in order for the visible effect to be produced.

H1H2→ Effect. This corresponds in our formalism to the case of Reverse SuperStruc-

turing. One example of this case is the Annihilation of an electron and a positron into

a photon. e+e− → γ as illustrated by the following Feynman diagram. In the diagram

the Annihilation is followed by a Disintegration which in our formalism will be repre-

sented by a SuperStructure γ → e+e−. Note that the electron positron annihilation is a

RSS and not an ANNIHILATE2 as in the Savitch type of theorems. In a certain sense

one of the arguments for using RSS versus ANNIHILATE2 is also the fact that physical

processes always have a byproduct despite carrying potentially misleading names such as

annihilation, or the byproduct being energetic rather than material. Nevertheless, since

our reasons for preferring GEN-ASNF versus GEN-ASNF-Savitch alternative are at best

aesthetic / intuitive reasons it should always be kept in mind as a possible alternative. In

the Statistical / Graphical Models literature the particular case of AND hidden explana-

www.manaraa.com

105

Figure 5.1 Feynman diagram for the electron positron Annihilation into
a photon followed by photon Disintegration into an electron
positron pair again

tions is the one that introduces edges between hidden variables in the depedence graph

[5], [9], [11].

Our analysis of the Turing equivalent formalism of Generative Grammars written in the

ASNF has evidenced them as the only needed types and we can infer under the Computa-

tionalistic Assumption that these are the only two essential reasons for postulating Hidden

Variables and any other reasons must be derivative.

5.5.2 Radical Positivism

Since RSS and RABS involve the postulation of hidden variables, and we have discussed the

perils associated with it, one alternative is to choose to use only Abstraction and SuperStructur-

ing. We propose that this in fact this characterizes the radical positivist [1] stance which allows

for empirical laws only. After we rule out RSS and RABS since they may introduce Hidden

Variables we are left with ABS and SS and this produces our proposed characterization of the

radical positivist position and what we mean by empirical laws under the Computationalistic

Assumption. The internal variables created by Abstraction and SuperStructuring are going to

be just convenient notations for aggregates of input data but nothing else: SuperStructuring is

just convenient labeling of already existing structures for the sake of brevity and Abstraction

on the other hand aggregates a group of variables into a more general type so that we can

www.manaraa.com

106

produce more encompassing laws but with coarser granularity. An explanation of a stream of

observations w in the Radical Positivist theory of the world (or least a piece of it) will look like

the picture in Figure 5.2 - top. In this picture the atoms are the observations and the theory of

the universe is mainly a theory of how the observables are grouped into classes (Abstractions)

and how smaller chunks of observations are tied together into bigger ones (SuperStructures).

The laws of the radical positivist theory are truly empirical laws as they only address relations

among observations.

However using only these two operators we cannot attain the power of Turing Machines.

More precisely, the resulting types of grammars will be a strict subset of Context Free Gram-

mars, (since CFG contain SS, and REN(ABS+RABS)). Next we will examine how any theory of

the world may look like from the most general perspective when we do allow Hidden Variables.

5.5.3 General theories of the world

An explanation of a stream of observations S ∗→ w in the more general hidden variable

theory of the world is illustrated in Figure 5.2 - bottom. The atoms are the hidden variables

and their organization is again in turn addressed by the Abstraction and SuperStructuring but

also Reverse Abstraction. This part is basically a context free part since all the productions are

context free. Observations are a derivative byproduct obtained from a richer hidden variable

state description by a reduction: either of size - performed by Reverse SuperStructuring or of

information - performed by Reverse Abstraction.

The hidden variables theory of the world picture is an oversimplification of the true story,

in general we may have a set of alternations of REN+SS and RABS+RSS rather than just

one. However as we have shown in Theorem 8 we can turn any grammar into a grammar

in Strong-GEN-ASNF such that any explanation done in three phases only (as illustrated in

Figure 5.2):

1. a growth phase where we use only REN+SS

2. a shrink phase where we use only RABS+RSS

www.manaraa.com

107

3. a phase where we only rewrite into Terminals.

Whether additional separations can be made, e.g., if we can push all the RABS from the first

phase into the second phase and make the first phase look like the one in the radical positivist

story (i.e., using only ABS+SS) is a topic of further investigation. We take this opportunity to

proposed it as a conjecture.

Conjecture. Let G = (N,T, S,R), ε /∈ L(G) be a General Grammar. Then we can

convert such a grammar into the Strong-GEN-ASNF i.e., such that all the productions are of

the following form:

1. A→ B

2. A→ BC - and this is the only rule that has BC in the rhs and this is the only rule that

has A in the lhs (strong-uniqueness).

3. A→ a - and this is the only rule that has A on the lhs and there is no other rule that has

a on the rhs. (strong uniqueness)

4. AB → C - and this is the only rule that has C in the rhs and this is the only rule that

has AB in the lhs (strong-uniqueness).

And furthermore for any derivation w such that γ ∗→ w , in G, γ ∈ N+ there exists a derivation

γ
∗→ µ

∗→ ν
∗→ w such that µ ∈ N+,ν ∈ N∗ and γ

∗→ µ contains only rules of type 1, more

particularly only Abstractions, and type 2 (ABS,SS), µ ∗→ α contains only rules of the type 1,

more particularly only Reverse Abstractions, and type 4 (RABS,RSS) and ν ∗→ w contains only

rules of type 3 (TERMINAL).

In a certain sense the conjecture can be seen as way to try to salvage as much as we can

from the Radical Positivist position by saying that in principle it is right with the caveat that

the atoms should be internal(hidden) variables rather than observations. If we were God (here

used in the scientifico-philosophical sense - i.e., somebody which knows the laws of the universe

and has access to the full hidden state of it) then we would be able to stop our explanation of

the current state after phase 1, which would use only Abstractions and SuperStructures (the

www.manaraa.com

108

Figure 5.2 Theory of the world: (top) - Radical Positivist, (bottom) - with
Hidden Variables

www.manaraa.com

109

Radical Positivist position). However since we are mere mortals and all we are able to perceive

are Observables which are just a simplified small reflection of the current hidden state of the

world there is a the need for reduction operations: reduction in size - performed by Reverse

SuperStructuring and reduction of information - performed by Reverse Abstraction. This is

then followed by the one to one correspondence between some internal variable and Observables

(Terminals in grammar terminlogy).

Our main claim so far is that we can rewrite any General Grammar in GEN-ASNF, that

is using only ABS, SS, RABS and RSS. In the next section we will examine a statement that

was made by the philosopher David Hume more that 200 years ago in the light of the GEN-

ASNF theorem and propose that they are more or less equivalent under the Computationalistic

Assumption. We then examine the developments that occured in the meantime in order to

facilitate our proof of Hume’s claim.

5.5.4 Hume principles of connexion among ideas

“I do not find that any philosopher has attempted to enumerate or class all the principles of

association [of ideas]. ... To me, there appear to be only three principles of connexion among

ideas, namely, Resemblance, Contiguity in time or place, and Cause and Effect” - David

Hume, Enquiry concerning Human Understanding, III(19), 1748. [6]

If we are to substitute Resemblance for Abstraction (as resemblance/similarity is the main

criterion for abstraction), Contiguity in time or place for SuperStructuring (as the requirement

for SuperStructuring is proximity - in particular spatial or temporal) and Cause and Effect for

the two types of hidden variable explanations then the GEN-ASNF theorem is the proof of a

more the two hundred years old claim. The main developments that have facilitated this result

are:

1. The Church-Turing thesis -1936 [18] (i.e., the Computationalistic Assumption) which

allowed us to characterize what a theory of the world is, i.e., an entity expressed in a

Turing equivalent formalism.

www.manaraa.com

110

2. The Generative Grammars - 1957 [4] the development of the Compositional formalism of

Generative Grammars which is Turing equivalent.

3. Developments in understanding the structure of Generative Grammars - The Kuroda

Normal Form 1964 [8] and General Kuroda Normal Form [13].

4. The GEN-ASNF theorems proved in this paper.

Furthermore the elucidation of the two types of causal explanation (alternative - Reverse Ab-

straction (RABS) and topological conjunctive - Reverse SuperStructuring (RSS)) is an addi-

tional merit of GEN-ASNF theorem. It should be mentioned also that we became aware of

Hume’s claim after we have already stated the GEN-ASNF theorem but prior to it’s proof in the

full generality. We were led to it in a certain sense by similar intuitions and investigations into

the nature of the Structural Induction process as David Hume’s. Once aware of it, this became

an additional supporting argument for the fact that the proof may be a feasible enterprise.

5.6 Conclusions

In this paper we have shown that Abstraction and SuperStructuring are essential structural

elements in the induction process. We have shown that only two more structural elements

are needed in order to obtain the full blown capacity of Turing Machines - the dual versions:

Reverse Abstraction and Reverse SuperStructuring. These two additional structural elements

are the constructs behind the two rationales for introducing hidden variables: alternative hidden

causes, and concurrent “proximal” hidden causes. Furthermore we have also shown that given

one theory of the world (expressed as a Generative Grammar) we can always convert it into a

theory of the world such that any explanation (derivation) of a stream of observations in it can

be reordered such that it occurs in three phases: a growth phase, where all the productions

used are of the context free type (REN(ABS+RABS)+SS), a shrink phase where we only use

(RABS+RSS) and a terminal phase where we only use TERMINAL productions. Whether

the RABS can be extricated from the first phase is a matter of future research and can be

viewed as a proposed conjecture. Furthermore we have also proposed that the radical positivist

www.manaraa.com

111

position of postulating only empirical laws restricts theories to the usage of Abstraction and

SuperStructuring only by avoiding altogether rules that postulate the existence of “hidden”

explanations. We have also shown that our GEN-ASNF can be seen as a proof, under the

Computationalistic Assumption, of a more than 200 years old claim of the philosopher David

Hume about the principles of connexion among ideas.

Bibliography

[1] A.J. Ayer, Language, Truth, and Logic. London: Gollancz. (2nd edition, 1946), 1936.

[2] M. Burgin. Super-Recursive Algorithms. Springer, 2005.

[3] R. Carnap. An introduction to the Philosophy of Science. 1966.

[4] N. Chomsky. Syntactic Structures. The Hague: Mouton. 1957.

[5] G. Elidan and N. Friedman. Learning Hidden Variable Networks: The Information Bot-

tleneck Approach. Journal of Machine Learning Research (JMLR), 6:81-127, 2005.

[6] D. Hume. An Enquiry Concerning Human Understanding . Hackett Publ Co. 1993.

[7] M. Hutter. Universal Artificial Intelligence: Sequential Decisions based on Algorithmic

Probability. EATCS, Springer, 2005.

[8] S.-Y. Kuroda. Classes of languages and linear-bounded automata. Information and Con-

trol, 7(2): 207–223, 1964.

[9] S. L. Lauritzen. Graphical Models. Clarendon Press, Oxford, 1996.

[10] T. Oates, T. Armstrong, J. Harris and M. Nejman. On the Relationship Between Lexical

Semantics and Syntax for the Inference of Context-Free Grammars. Proceedings of the 19th

National Conference on Artificial Intelligence ({AAAI}), 431–436, 2004.

[11] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Publishers,

1988.

www.manaraa.com

112

[12] K. R. Popper. The Logic of Scientific Discovery, Basic Books (English ed. 1959), 1934.

[13] A. Salomaa. Computation and Automata. Cambridge University Press, 1985.

[14] W. Savitch. How to make arbitrary grammars look like context-free grammars. SIAM

Journal on Computing, 2:174-182, 1973.

[15] J. Schmidhuber, J. Zhao and M. Wiering Shifting Bias with Success Story Algorithm.

Machine Learning, 28:105-130, 1997.

[16] R. Solomonoff. A Formal Theory of Inductive Inference, Part I. Information and Control,

7(1):1-22, 1964.

[17] R. Solomonoff. A Formal Theory of Inductive Inference, Part II. Information and Control,

7(2):224-254, 1964.

[18] A. Turing. On computable numbers with an application to the Entscheuidungs-problem,

Proc. Lond. Math. Soc., Ser.2, 42:230-265, 1936.

www.manaraa.com

113

CHAPTER 6. COMBINING ABSTRACTION AND

SUPERSTRUCTURING

Modified from a paper to be submitted to Neural Information Processing Systems

Adrian Silvescu1 and Vasant Honavar

Abstract

Finding an appropriate set of concepts in terms of which to develop a model is a very

important problem as the concepts in terms of which we choose to make the modeling can

have a big impact both on the accuracy and tractability (e.g., as measured by size) of the final

model. In this paper we study a way to construct new concepts / features based on the following

operations: Abstraction (grouping similar entities under one overarching category) and Super-

Structuring (grouping into one unit topologically close entities - in particular spatio-temporally

close). We propose an algorithm to construct features by combining the complementary powers

of Abstraction and SuperStructuring. SuperStructuring affords better modeling accuracy at

the expense of increasing model size, while Abstraction reduces model size and improves the

statistical estimates of too complicated models by shrinkage. In our experiments by using the

combination of Abstraction and SuperStructuring we achieve significantly lower model sizes (1-

3 orders of magnitude) for a minor drop in accuracy over the pure SuperStructuring approach

and in some cases we even achieve better accuracy while simultaneously lowering the model

size. We also show the superiority of Abstraction as opposed to the alternative approach of
1Primary researcher and author - designed and implemented the methods, made the theoretical arguments

and wrote the paper.

www.manaraa.com

114

using Feature Selection in order to reduce the size of the model created by SuperStructuring.

6.1 Introduction

Given a certain domain, the problem of finding an appropriate set of concepts in terms of

which to develop a model pertaining to it is a nontrivial one. The concepts in terms of which

we choose describe the model can have a big impact both on the accuracy and tractability (e.g.,

as measured by size) of the final model.

In previous papers [12], [26], [2] we have studied two important ways to construct new con-

cepts / features based on a primitive set (assumed given): Abstraction (grouping similar entities

under one overarching category) and Super-Structuring (grouping into one unit topologically

close entities - in particular spatio-temporally close).

SuperStructuring in the particular case of Multivariate Statistics corresponds to considering

higher order moments [3], [16]. In the Multivariate Statistics the topology is that of a complete

graph, namely, it is assumed that any two variables are within proximity of each other and

therefore can be grouped into a SuperStructure. The consideration of higher order moments

in particular and SuperStructuring in general are well known methods to increase the power

of the models (e.g., [20], [1], [8], [10]) and we have also used them for this purpose in [26], [2]

in the spatial domain(sequences) and temporal domain [25]. The increase in modeling power

however comes with the drawback that the size of the new extended model also increases

and consequently the model also becomes less comprehensible. One conceivable way to cope

with this increase is to perform Feature Selection [7], in order to reduce back the number

of variables. Another alternative is to use Abstraction (grouping similar features under one

overarching category). Abstraction aside from being capable of reducing model size can also

be viewed as some sort of regularization of the shrinkage type [17], [7]. By using more abstract

features which group together a set of less abstract features we effectively are able to increase

the sample size for that feature and thus have the potential to get better estimates and better

generalization due to the reduction in variance.

The main problem with using Abstraction versus Feature Selection is that we need to have

www.manaraa.com

115

a source of Abstractions at hand to be able to use it. Sometimes such sources may exist in

the form of taxonomies over the base features but may not exist over the SuperStructures. In

order to alleviate this problem an algorithm that is able to generate Abstraction over arbitrary

features is needed. We have proposed a algorithm - Attribute Value Taxonomy Learner [12]

that is capable to learn Taxonomies on demand for one attribute at a time in the Multivariate

setup. We can in principle extend it to cope with SuperStructures, and also to work in a

Multinomial setup.

So far we have studied the two operations of Abstraction and SuperStructuring in isolation

and in this paper we propose to study them combination with each other. The pairing is

complementary as SuperStructures provides one way to increase modeling accuracy, but at

the same time increase model size and Abstraction is a method which decreases model size

and also provides some sort of regularization by improving the statistical confidence of the

parameter estimates associated with each feature. This is extremely important as powerful

models such as the ones that use SuperStructuring are usually plagued by overfitting problems

on small sample size data . We will compare the combined approach with the baseline which

uses only the primitive features and with the two approaches that use Abstraction only and

SuperStructuring only. Additionally, we will also compare our approach with an alternative

combination, that of Feature Selection along with SuperStructuring. In this later case Feature

Selection will play the role of the operator that attempts to reduce model size.

In our experiments we show that by using the combination of Abstraction and SuperStruc-

turing we achieve significantly lower model sizes (1-3 orders of magnitude) for a minor drop in

accuracy over the pure SuperStructuring approach and in some cases we even achieve better

accuracy while simultaneously lowering the model size. The Abstraction + SuperStructuring

combination also dominates the Feature Selection + SuperStructuring combination showing

the superiority of Abstraction over Feature Selection at preserving modeling accuracy for the

same reduction in model size. Furthermore the combination Abstraction + SuperStructuring

is also superior in accuracy to both using the base features alone and using Abstraction over

the base features for the same model size (number of features used).

www.manaraa.com

116

The remainder of paper is organized as follows: In the next section we present our approach

to obtain features by combining Abstraction and SuperStructuring. Then we describe how

to use the induced features in a prediction task, namely sub-cellular localization for protein

sequences. Then we describe the experimental setup and the experimental results. Finally, we

conclude.

6.2 Combining Abstraction and SuperStructuring

We will test the usefulness of combining Abstraction and SuperStructuring in a sequence

classification scenario. More exactly we have a dataset of the form D = {di = (si, ci)}i=1,n

where si is a sequence over a finite alphabet G = {g1, ..., gn}, that is s ∈ G∗ and ci is a class

associated with the sequence si which belongs to a finite set C, ci ∈ C. Given such a dataset

D our algorithm is asked to produce a model which is able to predict the class c for a novel

sequence s.

We will use a filter / model-free approach [29] in order to derive a classification scheme

based on features constructed by the combination of Abstraction and SuperStructuring. In the

filter / model-free approach the relevance measure that scores the usefulness of the features

constructed is defined independently of the learning algorithm.that will use them, as opposed to

the wrapper / model-based approach which is dependent on the learning algorithm and scores

features based how well they improve its performance. The main advance of filter / model-free

versus the wrapper / model-based approaches is in terms of speed..

The main idea behind a filter classification scheme which can use any type of Feature

Construction prior to classification is presented in Algorithm 5. The input is a dataset D and

a number of features to construct nf . In step 1 a set of features of size nf are constructed

based on the training set D and the training set is transformed into a new data set D′ that

uses only these features. The data structure features contains the information needed to

construct each of the nf features from the instances like the ones appearing in the dataset D

(sequences s - without the class as it will not be available at prediction time). Subsequently,

in step 2, a classifier is constructed based on the transformed dataset D′. Theclassifier is

www.manaraa.com

117

FeatureConstructionClassifierTraining
Input: D = {di = (si, ci)}i=1,n; nf - number of features to construct
1. features, D′= ConstructFeaturesAndTransformDataset(nf , D)
2. classifier = ConstructClassifier(D′)
Output: classifer,features

FeatureConstructionClassifierPrediction
Input: classifier, features, s - instance to predict
1. s1= Transform(s,features)
2. class = Classify(classifier, s1)
Output: class

Algorithm 5 Feature Construction Classifier

totally agnostic to the fact that a Feature Construction and dataset Transformation took place

and any classifier can be used as long as it can handle the given type of features produced by the

transformation. The FeatureConstructionClassifierTraining then outputs the produced

classifier and features.

When asked for a prediction on a new instance s the instance is transformed using the

features and then is classified with the classifier that have been obtained in the previous step.

This is outlined in FeatureConstructionClassifierPrediction of Algorithm 5. Note again

that the classifier is agnostic as to whether a Feature Construction and data Transformation

took place or not.

In the next subsection we detail a ConstructFeaturesAndTransformDataset procedure which

combines Abstraction and SuperStructuring. Then in the following subsection we describe the

classifier that we have used for our experiments, namely the Naive Bayes Multinomial Classifier.

In this way we will produce a full blown instantiation of the Feature Construction Classifier

scheme presented in Algorithm 5.

6.2.1 ConstructFeatures: Abstraction + SuperStructuring

In this section we will describe one instantiation of the ConstructFeaturesAndTransform-

Dataset algorithm whose main purpose is to provide a scheme to construct features by combing

Abstraction and SuperStructuring. We first detail what we mean by SuperStructuring in the

www.manaraa.com

118

case of sequential data; then proceed to outline the algorithm and then address its various

details one by one.

The SuperStructures in the case of sequences are just all the contiguous (potentially over-

lapping) sub-sequences of the initial string of a certain length k, called k-grams (see e.g., [4]

for more details). For example for the string abaac the SuperStructures of size 3 (3-grams) are

{aba, baa, aac}. The topology in this case is a linear topology in the sense that each element

has at most two immediate neighbors: the neighbor to the right and the neighbor to the left

in the sequence if they do exist.

The basic idea of our algorithm is to first create an extended feature set based on Super-

Structures (k-grams in the case of sequences) in order to improve the modeling performance,

and then to shrink down this feature set in order to decrease the model size to a fixed number

of features nf . This is done in two steps as illustrated in Algorithm 6. First we find out all

the k-grams (SuperStructures) that appear in the string instances from the dataset D in step

1. Let’s say that there are m k-grams{kg1, ..., kgm} that appear in either of the sequences

contained in the dataset D. If a k-gram does not appear in the dataset D then it will not be

considered as a feature. This is done in order to prevent overfitting 2.

Then in step 2 a transformed dataset is created where each instance di = (si, ci) from the

original dataset is mapped into an instance d1i = ({[kg1 : #kgi
1], ..., [kgm : #kgi

m]}, ci) where

{[kg1 : #kgi
1], ..., [kgm : #kgi

m]} represents how many times each of the m k-grams kgj can be

found in the string si, and is denoted by #kgi
j . This representation is also known as a “bag of

features(k-grams)” representation. More exactly:

Definition(bag/multiset). Let F = {f1, ..., fm} be a set of elements, called features. We

call a bag/multiset a features over the base universe F = {f1, ..., fm} a function b : F → N

, where N is the set of natural numbers including 0. The function b is called the numerator

function and b(fj) tells us how many elements of the type fj are in the bag/multiset (contrast
2If the feature has zero support on the data there is no point in fitting it - the values for the parameters

associated with it will be non-sensical, i.e., not based on the data D - since the feature has zero support on
the data D! Note that this is true in the case where we have no additional information on how the feature is
related to other features that have non-zero support in the dataset D or even if we have the information our
algorithm does not uses it. If this additional information is available additional schemes become conceivable.
In this paper however we will not address this issue.

www.manaraa.com

119

ConstructFeaturesAndTransformDataset
Input: D = {di = (si, ci)}i=1,n; nf - number of features to construct; ks the k-
gram(SuperStructure) size.
1. SS = ConstructSuperStructures(ks, D)
2. D1 = Transform(D,SS)
3. ABS = ConstructAbstractions(nf ,D1) / FSEL = FeatureSelection(nf ,D1)
4. D2= Transform(D1,ABS) / D2= Transform(D1,FSEL)
Output: features : SS +ABS / features : SS + FSEL, D2

Algorithm 6 Features Constructor

this with the more particular indicator function for sets I : F → {0, 1}). Furthermore we will

often write the bag/multiset b by enumerating all the values that the function b takes at each

point {[f1 : #f1], ..., [fm : #fm]} to stand for b : F → N such that b(fj) = #fj .

Returning to the description of the algorithm: Given the dataset D1 where each instance

d1i = (bi = {[kg1 : #kgi
1], ..., [kgm : #kgi

m]}, ci) consists in a bag of k-grams over the

universe{kg1, ..., kgm} and a class, in step 3 we reduce this feature set to the desired num-

ber of feature nf . The reduction can be accomplished in two possible ways:

1. (ABS) by constructing Abstractions over the k-grams - that is partitioning the set of

k-grams into nf non-overlapping sets ABS = {a1 : set1, ..., anf : setnf} where ai denotes

the label for the i-th Abstraction and seti denotes the set of k-grams which are grouped

together into the i-th Abstraction. Thus an abstraction is basically identified with the

set of k-grams / features that it groups together. Note that because of the partition

requirement set1 ∪ ... ∪ setnf = {kg1, ..., kgm} and ∀1 ≤ i, j ≤ nf, seti ∩ setj = ∅.

2. (FSEL) by Feature Selection - more precisely by selecting a set of nf k-grams FSEL ⊆

{kg1, ..., kgm}, |FSEL| = nf .

Then in step 4 we transform the dataset D1 into a dataset D2 that has nf features (aside from

the class) as follows:

1. (ABS) given that the set of nf Abstractions is ABS = {a1 : set1, ..., anf : setnf}, with

setj ⊆ {kg1, ..., kgm},∀1 ≤ j ≤ nf an instance d1i = ({[kg1 : #kgi
1], ..., [kgm : #kgi

m]}, ci)

www.manaraa.com

120

from D1 is transformed into an instance d2i = ({[a1 : #ai
1], ..., [anf : #ai

nf]}, ci) where

#ai
j =

∑
kgl∈setj

#kgi
l ∀1 ≤ j ≤ nf

.

2. (FSEL) given that the selected set of features is FSEL = {kgj1 , ..., kgjnf
} ⊆ {kg1, ..., kgm}

an instance d1i = ({[kg1 : #kgi
1], ..., [kgm : #kgi

m]}, ci) from D1 is transformed into an

instance d2i = ({[kgj1 : #kgi
j1

], ..., [kgjnf
: #kgi

jnf
]}, ci).

In the next two subsections we describe the two reduction procedures used in step 3, namely

Abstraction (ABS) and Feature Selection (FSEL).

6.2.1.1 Constructing Abstractions

The procedure to construct Abstractions is illustrated in Algorithm 3. The input of the

algorithm is a dataset where each datapoint consists of a bag / multiset of features and a class

value D = {di = (bi = {[f1 : #f i
1], ..., [fm : #f i

m]}, ci)}i=1,n along with a number nf ≤ m that

represent the reduced number of Abstractions that is desired.

The algorithm is a typical Hierarchical Agglomerative Clustering [7] approach. We start in

step 1 by initializing the abstractions with the trivial grouping that creates as many groups as

there are input features, with one element in each group. Then in steps 2 - 4 we recursively merge

the given groups / Abstractions into bigger groups until we we obtain nf groups / Abstractions.

More exactly n− nf times (Step 2) we find the most “similar” two groups/Abstractions (Step

3), merge them, delete them from the set of abstractions and add the newly merged group /

Abstraction to the set of abstractions (Step 4). Finally, after n − nf such steps have been

performed we are left with nf groups / Abstractions and we return them as the final result.

In order to complete the description of the previous algorithm all we need to show is how

to compute the similarity measure D(ai : seti, aj : setj) from step 3. The general criteria

for establishing similarity between items and thus deriving useful Abstractions is the following

functionalist claim: Similar items occur within similar contexts. In this spirit one way to define

www.manaraa.com

121

ConstructAbstractions
Input: D = {di = (bi = {[f1 : #f i

1], ..., [fm : #f i
m]}, ci)}i=1,n; nf - number of abstractions to

construct
1. abstractions = {a1 : {f1}, ..., am : {fm}}
2. for p := m+ 1 to p = 2m− nf
3. (im, jm) = arg mini,j∈abstractionsD(ai : seti, aj : setj)
4. abstractions = abstractions\{aim : setim, ajm : setjm} ∪ {ap : setim ∪ setjm}
Output: abstractions

Algorithm 7 Abstractions Constructor

the similarity distance D(ai : seti, aj : setj) is to specify what we mean by the context of an

abstraction ai : seti and then define a distance between these contexts.

In what follows we will define the notion of the context of an Abstraction in a classification

scenario. First we will define what we mean by the context of a feature fi in a classification

scenario and then since an Abstraction is a set of features we will show how to define the

context of such a set by aggregating the contexts of the elements.

Definition (Class Context for Abstraction). Given a dataset D = {di = (bi = {[f1 :

#f i
1], ..., [fm : #f i

m]}, ci)}i=1,n we define the the Class Context of the feature fj to be the

total number of times the feature fj appears in an instance of each class c ∈ C counting with

multiplicity. That is:

[#[fj , c]]c=1,|C| :=

[
n∑

i=1

δ(c, ci)#f i
j

]
c=1,n

where δ is the Dirac function δ(i, j) = 1 iff i = j and 0 otherwise. Alternatively, we can

represent the context as a pair:

[#fj , P (C|fj)] :=

[∑
c∈C

#[fj , c],
[
#[fj , c]

#fj

]
c=1,n

]

That is the number of times that the feature fj appears in the dataset D counting with

multiplicity along with the conditional probability of the class given the feature fj : P (C|fj).

Note that the two representations contain the same information, just in different ways. We will

denote this pair with CContextD(fj) := [#fj , P (C|fj)] and call it the Class Context of the

feature fj with respect to the data D. The P (C|fj) represents in a certain sense the context

www.manaraa.com

122

proper and #fj is a weight that will be used in order to aggregate appropriately the “contexts”

of two or more features.

Next we show how to obtain the context of an Abstraction composed of two features.

Let fj1and fj2 be two features and their contexts be [#fj1, P (C|fj1)] and [#fj2, P (C|fj2)]

respectively. We define the class context of the set {fj1, fj2} to be

CContextD({fj1, fj2}) := [#fj1 + #fj2, π1P (C|fj1) + π2P (C|fj2)]

where π1 := #fj1

#fj1+#fj2
and π2 := #fj2

#fj1+#fj2
.

More generally given a set of q features {fj1,...,fjq} we define

CContextD({fj1,...,fjq}) :=

[
p∑

l=1

#fjl
,

p∑
l=1

πlP (C|fjl
)

]
(6.1)

where

π
l
:=

#fjl∑p
l=1 #fjl

Note that if we are to “abstract out” the difference between all the features {fj1,...,fjq}

and replace each of their occurrences with a new feature called for example a then in each

datapoint di = (bi = {[f1 : #f i
1], ..., [fm : #f i

m]}, ci) the feature a will appear #ai =
∑p

l=1 #f i
jl
,

and furthermore the feature a will appear in the whole dataset D #a =
∑p

l=1 #fjl
and also

#[a, c] =
∑p

l=1 #[fjl
, c]. Furthermore:

P (C|a) =
[
#[a, c]

#a

]
c=1,n

=
[∑p

l=1 #[fjl
, c]∑p

l=1 #fjl

]
c=1,n

=

[
p∑

l=1

#[fjl
]∑p

l=1 #fjl

#[fjl
, c]

#[fjl
]

]
c=1,n

=

[
p∑

l=1

πlP (c|fjl
)

]
c=1,n

=
p∑

l=1

πlP (C|fjl
)

Thus we have just proved that

CContextD({fj1,...,fjq}) =

[
p∑

l=1

#fjl
,

p∑
l=1

πlP (C|fjl
)

]
= [#a, P (C|a)] := CContextD(a)

www.manaraa.com

123

That is the definition of CContextD({fj1,...,fjq}) from Equation 6.1 coincides with the nat-

ural definition of an abstraction based on “abstracting out” the difference between the features

{fj1,...,fjq} and considering them as being a single feature a. Because of this well definiteness

we can identify the two and write

CContextD(a : {fj1,...,fjq}) =

[
p∑

l=1

#fjl
,

p∑
l=1

πlP (C|fjl
)

]
= [#a, P (C|a)]

This will be the formula that we will use in order to compute the context an abstraction. Note

that in this way we have also proved that
∑p

l=1 πlP (C|fjl
) is actually a probability distribution

over the values c ∈ C because it is the same as P (C|a).

Given this well definiteness and identification we can move on and define the distance

between the contexts of two arbitrary Abstractions. This will be used to assess the similarity

between those two Abstractions and we will thus finish the description of Algorithm 7.

We first define the Kullback-Leibler Divergence [5] between two probability distributions.

Then we define the Weighted Jensen-Shannon Distance [15] between two probability Distribu-

tions with weights w1, w2. Finally, we use the Weighted Jensen-Shannon Distance to define the

distance between two Abstractions.

Definition (Kullback-Leibler Divergence). Let C be a finite set and P1(C), P2(C) be

two probability distribution over C. We define the Kullback-Leibler Divergence between two

probability distributions P1(C), P2(C) as:

KL(P1(C)||P2(C)) =
∑
c∈C

P1(c) log
P1(c)
P2(c)

Definition (Weighted Jensen-Shannon Distance). Let w1, w2 ∈ [0,∞), C be a finite

set and P1(C), P2(C) be two probability distribution over C. Let π1 = w1
w1+w2

,π2 = w2
w1+w2

and Pc(C) = π1P1(C) + π2P2(C). Note that Pc(C) = π1P1(C) + π2P2(C) is also a probability

distribution over C if P1(C), P2(C) are probability distributions over Cand π1 +π2 = 1 as it is

the case in our definition (a convex combination of probability distributions is also a probability

distribution).

We define the Weighted Jensen-Shannon Distance between P1(C) and P2(C) with weights

w1 and w2, respectively as:

www.manaraa.com

124

WJS([w1, P1(C)], [w2, P2(C)]) := π1KL(P1(C)||Pc(C)) + π2KL(P2(C)||Pc(C))

The weighted Jensen Shannon distance is a generalization of the Jensen Shannon distance

between two probability distributions [15] that allows for an asymmetry in the consideration

of the two elements (the standard Jensen Shannon distance uses 1
2 as weights), see also [27] .

Finally we are ready to define the distance between two Abstractions that is needed in order

to finalize the description of Algorithm 7.

Definition (Class Context Distance). Let ai : seti, aj : setj two abstractions we define

D(ai : seti, aj : setj) := WJS(CContext(ai : seti), CContext(aj : setj))

= WJS([#ai, P (C|ai), [#aj , P (C|aj)])

In the next subsection we describe the other reduction method from Algorithm 6, namely

Feature Selection.

6.2.1.2 Feature Selection

We will now describe Feature Selection, more precisely: selecting a set of nf features

from FSEL ⊆ {f1, ..., fm}, |FSEL| = nf . In order to achieve this we will rank all features

according to the scoring function Score and then select the top nf ranking features according

to the respective Score function. We will use mutual information [5] (a.k.a. information gain in

this context [19]) between the probability of the class variable P (C) and the probability of the

feature feature f , which measures how dependent the two variables are. More exactly, given a

dataset D = {di = (bi = {[f1 : #f i
1], ..., [fm : #f i

m]}, ci)}i=1,n, with C being the set of classes

ci ∈ C . Let f ∈ {f1, ..., fm} , we define the value / Score of the feature f as estimated from

data D to be:

ScoreD(f) = KL(P (f, C)||P (f)P (C))

where P (f, C) is estimated from counts gathered from the dataset D and P (f) and P (C)

are obtained by marginalization fromP (f, C).

www.manaraa.com

125

The ScoreD(f) is also known as the information gain because of the identity:

KL(P (f, C)||P (f)P (C)) = H(P (C))−H(P (C|f)|P (C))

So far we have fully described the ConstructFeaturesAndTransformDataset algorithm and

we will move on to present next the classifier used in our experiments.

6.2.2 Naive Bayes Multinomial Classifier

In this section we describe the Naive Bayes Multinomial Classifier. It is one possible classifier

to be constructed in step 2 of the Feature Construction Classifier outlined Algorithm 5. And

it is in particular the classifier that we have used in our experiments.

Definition (Naive Bayes Multinomial Classifier). Let D = {di = (bi = {[f1 :

#f i
1], ..., [fm : #f i

m]}, ci)}i=1,n be a dataset, with C being the set of classes ci ∈ C and F =

{f1, ..., fm} be the set of features. Then we call a Naive Bayes Multinomial Classifier an

algorithm that predicts the class of a new instance b′ = {[f1 : #f ′1], ..., [fm : #f ′m]} as follows:

class = arg max
c∈C

P (c)
m∏

j=1

P (fj |c)#f ′
j

where P (c) and P (fj |c) are estimated from counts gathered from the dataset D.

We have therefore shown how to perform a complete instantiation of the Feature Construc-

tion Classifier outlined in Algorithm 5 and we will next describe the experiments performed

within this setup. We first examine some related work and then proceed to the description of

the experimental setup and results.

6.2.3 Related work

The problem of Feature Construction is a widely studied issue in the Machine Literature.

It can be found under many names and in various approaches: feature construction [28], [8]

or predicate invention [14] in inductive logic programming, Statistical Predicate Invention in

Relational Learning [13], constructive / natural induction [30], [20], [21], [18], [11]. The closest

work related to ours is Jonyer et al. 2004 [11] where the authors induce a Context-Free Graph

www.manaraa.com

126

Grammar Induction. Their algorithm attempts to infer Abstractions and SuperStructures

even though not explicitly called so. Their approach however is unconditional (not aimed

at predicting a target class variable) and also the scoring function is MDL-Based (aimed at

compression) rather than statistically based as ours.

Many methods use SuperStructuring in order to improve modeling accuracy starting from

using higher order moments in statistics [3] to Bayesian Networks and Markov networks [22],

[6], [10], k-grams in linguistics [4], decision trees and rules [24], etc. A variety of methods

also have been proposed for clustering features (see [12] and references therein). Slonim and

Tishby [27] described a technique (called the agglomerative information bottleneck method)

which extended the distributional clustering approach described by Pereira et al. [23], using

the Jensen-Shannon divergence for measuring distance between document class distributions

associated with words and applied it to a text classification task. The work by Slonim and

Tishby [27] agglomerative information bottleneck is very close both in spirit and in form to our

proposed method for creating Abstractions but they use the raw features i.e., words rather that

SuperStructures (k-grams in our case). To our knowledge our work is the first that provides

an examination and comparison of the possible alternatives to combine SuperStructuring with

model reduction techniques such as Abstraction and Feature Selection in the class conditional

case and makes a strong case for the combination of Abstraction and SuperStructuring.

6.3 Experiments

6.3.1 Experimental setup

We show experimental results on two subcellular localization prediction datasets, one for

eukaryotes and one for prokaryotes. Each dataset consists in a set of protein sequences along

with a class associated with each protein sequence which denotes the cellular compartment

where the protein is found in the cell. More exactly:

1. eukaryotes dataset - The dataset consists of 2427 eukaryotic protein sequences that are

composed of 22 aminoacids plus two terminators: BEGIN_SEQ and END_SEQ inserted

www.manaraa.com

127

by us at the beginning and end of the of each sequence (the base alphabet G thus has

24 letters). Each sequence can belong to one of the following four classes {nuclearEuk,

cytoplasmicEuk, extracellularEuk, mitochondrialEuk}.

2. prokaryotes dataset - The dataset consists of 997 prokaryotic protein sequences that are

composed of 20 aminoacids plus two terminators: BEGIN_SEQ and END_SEQ inserted

by us at the beginning and end of the of each sequence (the base alphabet G thus has 22

letters). Each sequence can belong to one of the following three classes {peripalsmicPro,

cytoplasmicPro, extracellularPro}.

The average length of a protein sequence is about 300 aminoacids.

The experiments performed are meant to contrast the combination of Abstraction and

SuperStructuring with approaches where we do not use either or both of these methods for

Feature Construction and also with the alternative of combining Feature Selection and Super-

Structuring. More precisely for both datasets we have performed experiments in the following

setups:

1. UNIGRAM - experiments where no Abstraction or SuperStructuring or Feature Selection

is done. The features used the unigrams. Basically this means that a bag/multiset based

on the base alphabet (aminoacids + terminators) is created and for each symbol in the

alphabet the number of times it appears in a sequence is recorded as a value for that

feature. This is the most basic scenario where no Feature Construction is done.

2. ABS_ONLY - No SuperStructuring (k-grams) is performed, we use unigrams instead,

but a reduction to nf features by Abstraction is done - the features are a bag of nf

Abstractions of unigrams.

3. SS_ONLY - Only SuperStructuring is performed (k-grams k ≥ 2 are constructed) but

then no reduction by either Abstraction or Feature Selection is attempted. The features

are a bag of k-grams, one feature for each k-gram that appears in the dataset.

www.manaraa.com

128

4. FSEL+SS - SuperStructuring is performed (k-grams k ≥ 2 are constructed) and then

Reduction by Feature Selection is done down to nf features. The features are a select

bag of nf k-grams.

5. ABS+SS - SuperStructuring is performed (k-grams k ≥ 2 are constructed) and then

Reduction by Abstraction is done down to nf features. The features are a bag of nf

Abstractions of k-grams.

In the next section we present and discuss the experimental results for both the eukaryotes

and prokaryotes dataset, for different sizes of k-grams (2 and 3) and for variable number of

constructed features nf .

6.3.2 Experimental results

1. Figure 6.1: eukaryotes dataset 3-grams - UNIGRAM - 24 unigrams, SS_ONLY 3-grams

∼ 8000 features (24× 24× 24 - the ones that do not appear)

2. Figure 6.2: blow-out of the previous figure in the [1-40] features range.

3. Figure 6.3: eukaryotes dataset 2-grams - UNIGRAM - 24 unigrams, SS_ONLY 2-grams

∼ 400 features (24× 24 - the ones that do not appear)

4. Figure 6.4: prokaryotes dataset 3-grams - UNIGRAM - 22 unigrams, SS_ONLY 3-grams

∼ 8000 features (22× 22× 22 - the ones that do not appear)

5. Figure 6.5: prokaryotes dataset 2-grams - UNIGRAM - 22 unigrams, SS_ONLY 2-grams

∼ 400 features (22× 22 - the ones that do not appear)

On an overwhelming set of points the graphs show that for the same number of features con-

structed the combination of Abstraction and SuperStructuring - ABS+SS is superior in perfor-

mance to using the base features - UNIGRAM, Abstraction only on top of these base features

- ABS_ONLY, or the alternative combination of Feature Selection and SuperStructuring -

FSEL+SS.

www.manaraa.com

129

When comparing the combination ABS+SS with the SuperStructuring only approach SS_ONLY,

the ABS+SS in all cases gets very close in terms of performance to the SS_ONLY with rela-

tively few features (SS_ONLY uses > 8000 for 3-grams, and > 400 for 2-grams) and in some

cases even outperforms SS_ONLY - most prominently in the Eukaryotes 3-gram case (Figures

6.1-6.2) first after 80 features and then consistently after 120 -150 features. Compared with

> 8000 features for SS_ONLY, this is an almost two orders of magnitude drop in model size

for the same performance. Furthermore for a small drop in performance (1% − 2%) in all the

graphs we have a a reduction of model size by at least one order of magnitude - but in some

cases even 2 or almost 3 orders of magnitude. As already stated the ABS+SS is also superior

to the alternative possible combination of Feature Selection and SuperStructuring - FSEL+SS.

6.4 Conclusions

We have proposed an algorithm to construct features by combining the complementary pow-

ers of Abstraction and SuperStructuring. SuperStructuring affords better modeling accuracy

at the expense of increasing model size, while Abstraction reduces model size and improves the

statistical estimates of too complicated models by shrinkage. We have performed experiments

on two datasets and have shown the ability of Abstraction and SuperStructuring combination

to produce significantly smaller models (1-3 orders of magnitude) for little or no sacrifice in

cross-validation performance or even gain in some cases. We have also further shown the su-

periority of Abstraction as opposed to the alternative approach of using Features Selection in

order to reduce the size of the model created by SuperStructuring. The proposed algorithm is

probably the simplest possible scheme of combining Abstraction and SuperStructuring and it

represents just a starting point, but even in such a simple scenario a good case can be made

for the merits of this marriage.

Bibliography

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discovery of

association rules. In U.M. Fayyad, G. Piatetski-Shapiro, P. Smyth, and R. Uthurusamy,

www.manaraa.com

130

Figure 6.1 Comparison of the Abstraction + SuperStructuring method
with other methods on the Eukaryotes dataset 3-grams. The
graph represents cross-validation accuracy (5-fold) as a function
of the number of features used. UNIGRAM uses 24 features;
SS_ONLY 3-grams uses 8000 features. ABS_ONLY varies in
the range 1-24 features; ABS+SS and FSEL+SS vary in the
range1-400 features.

www.manaraa.com

131

Figure 6.2 Comparison of the Abstraction + SuperStructuring method
with other methods on the Eukaryotes dataset 3-grams - blowout
of the [1-40] range. The graph represents cross-validation ac-
curacy (5-fold) as a function of the number of features used.
UNIGRAM uses 24 features; SS_ONLY 3-grams uses 8000 fea-
tures. ABS_ONLY varies in the range 1-24 features; ABS+SS
and FSEL+SS vary in the range 1-40 features.

www.manaraa.com

132

Figure 6.3 Comparison of the Abstraction + SuperStructuring method
with other methods on the Eukaryotes dataset 2-grams. The
graph represents cross-validation accuracy (5-fold) as a function
of the number of features used. UNIGRAM uses 24 features;
SS_ONLY 2-grams uses 400 features. ABS_ONLY varies in
the range 1-24 features; ABS+SS and FSEL+SS vary in the
range 1-400 features.

www.manaraa.com

133

Figure 6.4 Comparison of the Abstraction + SuperStructuring method
with other methods on the Prokaryotes dataset 3-grams. The
graph represents cross-validation accuracy (5-fold) as a function
of the number of features used. UNIGRAM uses 22 features;
SS_ONLY 3-grams uses 8000 features. ABS_ONLY varies in
the range 1-22 features; ABS+SS and FSEL+SS vary in the
range 1-400 features.

www.manaraa.com

134

Figure 6.5 Comparison of the Abstraction + SuperStructuring method
with other methods on the Prokaryotes dataset 2-grams. The
graph represents cross-validation accuracy (5-fold) as a function
of the number of features used. UNIGRAM uses 22 features;
SS_ONLY 2-grams uses 400 features. ABS_ONLY varies in
the range 1-22 features; ABS+SS and FSEL+SS vary in the
range 1-400 features.

www.manaraa.com

135

editors, Advances in Knowledge Discovery and Data Mining, pages 307–328. AAAI Press,

1996.

[2] C. Andorf, A. Silvescu, D. Dobbs, and V. Honavar. Learning Classifiers for Assigning Pro-

tein Sequences to Gene Ontology Functional Families. In: Fifth International Conference

on Knowledge Based Computer Systems (KBCS 2004). India. 2004.

[3] G. Casella, and R. L. Berger. Statistical Inference, Duxbury, 2002.

[4] E. Charniak. Statistical Language Learning, Cambridge. MIT Press, 1993.

[5] T. M. Cover and J. A. Thomas. Elements of Information Theory. New York: Wiley, 1991.

[6] R. Cowell, A. Dawid, S. Lauritzen, and D. Spiegelhalter. Probabilistic Networks and

Expert Systems. Springer, 1999.

[7] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley. 2001.

[8] S. Della Pietra, V. Della Pietra, and J. Lafferty, "Inducing features of random fields," In

IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):380-393, 1997.

[9] F Fleuret. Fast Binary Feature Selection with Conditional Mutual Information, Journal

of Machine Learning Research (JMLR), 5:1531–1555, 2004.

[10] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian Network Classifiers. Machine

Learning 29:131-163, 1997 .

[11] I. Jonyer, L. Holder and D. Cook, MDL-Based Context-Free Graph Grammar Induction

and Applications, International Journal of Artificial Intelligence Tools, 13(1), pages 45-

64, 2004.

[12] D.-K. Kang, A. Silvescu, J. Zhang, and V. Honavar. Generation of Attribute Value Tax-

onomies from Data for Accurate and Compact Classifier Construction. In: IEEE Inter-

national Conference on Data Mining (ICDM 2004), Brighton, UK, November 1, 2004.

www.manaraa.com

136

[13] S. Kok, and P. Domingos. Statistical predicate invention. In Proceedings of the 24th

international Conference on Machine Learning (Corvalis, Oregon, June 20 - 24, 2007).

Z. Ghahramani, Ed. ICML ’07, vol. 227. ACM, New York, NY, 433-440, 2007.

[14] S. Kramer. Predicate invention: A comprehensive view. Technical Report. Austrian Re-

search Institute for Artificial Intelligence, Vienna, Austria, 1995.

[15] J. Lin. Divergence measures based on the shannon entropy. IEEE Trans. on Information

Theory, 37(1):145-151, January 1991.

[16] K.V. Mardia, J.T. Kent, and J.M. Bibby. Multivariate Analysis. Academic Press, 1979.

[17] A. McCallum, R. Rosenfeld, T. Mitchell, and A. N. Ng. Improving text classification by

shrinkage in a hierarchy of classes. Proceedings of the 15th International Conference on

Machine Learning - ICML’98. 1998.

[18] R.S. Michalski. ATTRIBUTIONAL CALCULUS: A Logic and Representation Language

for Natural Induction, Reports of the Machine Learning and Inference Laboratory, MLI

04-2, George Mason University, Fairfax, VA, April, 2004.

[19] T. Mitchell, Machine Learning, McGraw Hill, 1997.

[20] M. Pazzani. Constructive induction of Cartesian product attributes. Information, Statis-

tics and Induction in Science. Melbourne, Australia.

[21] R. Parekh, J. Yang, and V. Honavar. (2000). Constructive Neural Network Learning Algo-

rithms for Multi-Category Pattern Classification. IEEE Transactions on Neural Networks.

11(2):436-451.

[22] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Publishers,

1988.

[23] F. Pereira, N. Tishby, and L. Lee. Distributional clustering of English words. Proceedings

of the 31st ACL, pp 183–190, 1993.

www.manaraa.com

137

[24] J. R. Quinlan. C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.

[25] A. Silvescu, and V. Honavar. Temporal Boolean Network Models of Genetic Networks

and Their Inference from Gene Expression Time Series. In: Complex Systems. 13(1):54-

75, 2001.

[26] A. Silvescu, C. Andorf, D. Dobbs, and Honavar, V. Inter-element dependency models for

sequence classification. Technical Report. June 2004.

[27] N Slonim and N Tishby. Agglomerative information bottleneck. In: Advances in Neural

Information Processing Systems (NIPS-12). 1999.

[28] A. Srinivasan and R.D. King. Feature construction with inductive logic programming:

A study of quantitative predictions of biological activity aided by structural attributes.

In S. Muggleton, editor, Proceedings of the 6th International Workshop on Inductive

Logic Programming, volume 1314 of Lecture Notes in Artificial Intelligence, pages 89–104.

Springer- Verlag, 1996.

[29] J. Yang and V. Honavar. Feature subset selection using a genetic algorithm. In H. Liu

and H. Motoda, editors, Feature extraction, construction and selection, pages 118–135.

Kluwer Academic Publisher, 1998.

[30] J. M. Zelle and R. J. Mooney. Learning semantic grammars with constructive induc-

tive logic programming. Proceedings of the Eleventh National Conference on Artificial

Intelligence (pp. 817–822). Washington, DC: AAAI, 1993.

[31] J. Zhang, A. Silvescu, and V. Honavar. Ontology-Driven Induction of Decision Trees at

Multiple Levels of Abstraction. In: Proceedings of Symposium on Abstraction, Reformu-

lation, and Approximation (SARA 2002). 316-323. Berlin: Springer-Verlag. 2002.

www.manaraa.com

138

CHAPTER 7. INDEPENDENCE, DECOMPOSABILITY AND

FUNCTIONS WHICH TAKE VALUES INTO AN ABELIAN GROUP

Modified from a paper published in Proceedings of the Ninth International Symposium on

Artificial Intelligence and Mathematics1

Adrian Silvescu2 and Vasant Honavar

Abstract

Decomposition is an important property that we exploit in order to render problems more

tractable. The decomposability of a problem implies the existence of some “independences”

between relevant variables of the problem under consideration. In this paper we investigate the

decomposability of functions which take values into an Abelian Group. Examples of such func-

tions include: probability distributions, energy functions, value functions, fitness functions, and

relations. For such problems we define a notion of conditional independence between subsets of

the problem’s variables. We prove a decomposition theorem that relates independences between

subsets of the problem’s variables with a factorization property of the respective function. As

particular cases of this theorem we retrieve the Hammersley-Clifford theorem for probability

distributions; an Additive Decomposition theorem for energy functions, value functions, fitness

functions; and a relational algebra decomposition theorem.
1Reprinted (no permission needed as the copyrights were not transfered) from Proceedings of the Ninth

International Symposium on Artificial Intelligence and Mathematics (AIMATH 2006). Ft Lauderdale, Florida,
2006.

2Primary researcher and author - designed the framework and definitions, made the theoretical arguments
and wrote the paper.

www.manaraa.com

139

7.1 Introduction

Probabilistic Graphical Models (PGMs) have proved to be an effective way of representing

probability distributions in a concise and intuitive form. Compact graphical representations

support efficient reasoning and learning algorithms in many cases that arise in practice [12],

[4], [8]. The key idea behind PGMs is the notion of probabilistic independence. Independence

allows us to “decompose” the probability distribution into smaller parts, thereby substantially

reducing the number of independent parameters that we need to know in order to specify the

probability distribution.

Given the successful exploitation of independence in PGMs it is natural to ask whether we

can define a more general case of independence with similar decomposability properties. Results

concerning additive (rather than multiplicative) decomposability in various scenarios have been

explored in [2], [9], [1]. Similarly, in the context of relational databases decomposition results

such as MVD (Multi-Valued Decomposition) were obtained, see [15] and references therein.

In this paper, we seek a unifying thread of decomposability results. More precisely we

identify a class of models more general than probabilities, namely: functions which take values

into an Abelian group (denoted F·→AG) and we examine their decomposability properties. The

class of models F·→AG includes as particular cases: strictly positive probability distributions;

additive decomposable functions and relations among others. In general we show that some es-

sential results already known for probabilities will also hold for the more general class of models

F·→AG. More exactly, we show that for F·→AG we can define a general notion of Conditional In-

dependence that is the natural generalization of probabilistic Conditional Independence. This

General Conditional Independence will allow us to “decompose” a function f from F·→AG in the

same way as a probability distribution can be “decomposed”. More precisely, we prove a gener-

alization of the well known Hammersley-Clifford theorem, which holds for arbitrary functions

from F·→AG. Furthermore, we also prove a completeness theorem.

These results, in addition to unifying a broad class of decomposition results that have

been previously proved in particular cases, should hopefully further the crossfertilization of

results and techniques developed in settings that represent particular cases of F·→AG. One

www.manaraa.com

140

particular case for example, aside from PGMs, is the analysis of fitness functions in Evolutionary

Algorithms in order to improve search [10].

The rest of the paper is organized as follows: In Section 7.2 we introduce some definitions

regarding Decomposition and Independence in a very general setting. In section 7.3 we shrink

our domain of interest and define a General Conditional Independence concept for functions

whose ranges are Abelian Groups: F·→AG. Subsequently, we explore some of the properties of

this generalized independence relation. This section also contains the main result of this paper:

a factorization property consisting in the natural generalization of the Hammersley-Clifford

theorem [3] for arbitrary functions from F·→AG. We conclude section 7.3 with a completeness

theorem that shows that four axioms completely characterize all the independence statements

that hold for a function f ∈ F·→AG. In section 7.4 we present some important particular

cases of decomposable functions which take values into an Abelian Group, such as: probability

distributions, additive decomposable functions and relations. Section 7.5 concludes with a

summary, discussion, and a brief outline of some directions for further research.

7.2 Decomposition and Independence

Decomposition is an key technique that makes the solution of otherwise complex problems

tractable by the means of a divide and conquer approach. Decomposition exploits the fact

that occasionally a problem can be split (decomposed) into subproblems which can be solved in

isolation and then the overall solution can be obtained by aggregating the partial solutions. If

such is the case, we say that the two parts are independent with respect to the problem under

consideration.

The subproblems, in practice, are seldom disjoint, but all is not lost in this case, because

we can define a weaker notion of independence, namely conditional independence, that is still

useful.

Furthermore, if one or more of the subproblems are further decomposable into smaller parts,

we can apply the same strategy of aggregating partial solutions, recursively. Thus, in a divide

and conquer fashion, we would be able to obtain a solution for our problem by aggregating it

www.manaraa.com

141

from solutions of smaller and smaller parts.

In what follows we will try to capture these intuitions underlying Decomposition and Inde-

pendence with more precise definitions.

Definition (problem): A problem P is a triple P = (D,S, solP) where D is a set called

the domain set, S is a set called the solutions set and solP : D → S is a function that maps an

element d from the domain of the problem to its solution s.

Example: Determinant_Computation(M2,R, det) where M2 is the set of all square

matrices, and det is the function that returns the determinant of a matrix.

Definition (conditional independence - variable-based) Given a problem P = (D,S, solP)

we say that, D is decomposable into A and B conditioned on C, or equivalently, that A is inde-

pendent of B conditioned on C, both with respect to the problem P , if D = A×B×C (or more

liberally D is isomorphic with A×B×C) and there exist two problems P1 = (A×C,SAC , solP1)

and P2 = (B × C,SBC , solP2) and an operator ⊕P1,P2

P : SAC × SBC → SD such that for all

d = (a, b, c) ∈ A×B × C we have:

solP (d = (a, b, c)) = solP1(a, c)⊕
P1,P2

P solP2(b, c)

where ⊕P1,P2

P : SAC × SBC → SD. �

The rest of this paper is concerned with variable-based independence. More precisely, we

will consider the particular case where the operator ⊕P1,P2

P is an operator ⊕P1,P2

P : G×G→ G .

That is, the solutions to the problems P, P1, P2 are elements from the same set G . Furthermore,

we will assume that the operator⊕P1,P2

P does not depend on the problems P, P1, P2 and therefore

we can drop them from the notation yielding a single operator: ⊕ : G × G → G. Lastly, we

will consider G to be an Abelian Group for reasons that will become apparent later on.

The main reason for studying this more particular scenario is to be able to obtain results

characterizing the phenomenon. In the very general setup given by the previous definition,

while very interesting in itself, little can be said from the mathematical point of view aside

from the divide and conquer strategy already outlined.

www.manaraa.com

142

7.3 Independence & Decomposition in F·→AG

In this section we consider Independence and Decomposability of functions whose ranges

are Abelian Groups: F·→AG. After defining Abelian Groups (7.3.1), we introduce the defini-

tion of Conditional Independence with respect to a function f , - If (·, ·|·) (7.3.2) (Note that for

probabilistic independence the function f is the very probability distribution). We then show

that If (·, ·|·) satisfies four properties that are considered as essential/defining for the notion of

independence, (e.g., [12]) (7.3.3). These properties are: trivial independence, symmetry, weak

union and intersection. We then recapitulate the main results already existing in the litera-

ture, (e.g., [6]), regarding Conditional Independence relations that satisfy these four properties

(7.3.4). The main target of these results is to establish the equivalence between conditional

independence and graph separability (Note: the graph in question is obtained by not drawing

an edge between two variables whenever they are independent of each other given the rest of

the variables, and drawing one otherwise). We then present the main theorem which allows us

to “boil down” a set of pairwise conditional independences of the form If (A,B|C) into a global

decomposition of the function f over the maximal cliques of the associated independence graph.

This theorem is the natural generalization of the Hammersley-Clifford theorem for probability

distributions, to the more general case of F·→AG. We conclude this section with a complete-

ness theorem which states that the four abovementioned properties are a complete axiomatic

characterization of independences that hold for a function f whose range is an Abelian group

f ∈ F·→AG (7.3.5).

7.3.1 Abelian Groups

In this subsection we give the definition of Abelian Groups (a.k.a. commutative groups),

followed by some examples that we will use later on as representative particular cases for our

theory.

Definition. (Abelian Group) An Abelian Group is a quadruple (G,⊕, θ,) where G is

a nonempty set, ⊕ : G × G → G is a binary operation over elements from G that returns an

element of G, θ ∈ G and 	 : G → G is a unary operation over the elements of G that returns

www.manaraa.com

143

an element of G, with the following properties:

1. ⊕ is associative i.e., ∀g1, g2, g3 ∈ G (g1 ⊕ (g2 ⊕ g3)) = ((g1 ⊕ g2)⊕ g3)

2. ⊕ is commutative i.e., ∀g1, g2 ∈ G g1 ⊕ g2 = g2 ⊕ g1

3. θ is an identity element i.e., ∀g ∈ G g ⊕ θ = θ ⊕ g = g

4. 	 is an inversion operator i.e., ∀g ∈ G ∃!h ∈ G g ⊕ h = h ⊕ g = θ. We will call 	g the

unique h with the previous property. Subsequently, the inversion property can be written

as ∀g ∈ G ∃!	 g ∈ G s.t g ⊕	g = 	g ⊕ g = θ �

Examples: 1. (R,+, 0,−) is a group, where: R is the set of real numbers; + is the addition

between real numbers; 0 is zero; and −is the unary operator minus that returns the inverse of

a real number (e.g., −(7) = −7 and −(−6) = 6). In more common notation we use − as a

binary operator where a− b actually stands for a+−b.

2. ((0,∞), ·, 1, −1) is a group. where: · is the multiplication between real numbers; 1 is

one; and −1is the inverse of a real number with respect to multiplication (i.e, a−1 = 1
a). In

more common notation we use fractions as binary operators therefore having expressions such

as a
b , which stands for a · b−1.

3. (R, ·, 1, −1) is not a group. This is because 0 has no inverse.

4. Z2 = ({0, 1},⊗, 0,−) is a group where ⊗ stands for the Exclusive OR (XOR) operation

(or equivalently, addition modulo 2). More exactly: 0⊗0 = 0; 0⊗1 = 1;1⊗0 = 1 and 1⊗1 = 0,

and − is the identity operator, that is: −0 = 0; and −1 = 1. �

For the purposes of simplifying notation, for the rest of this section, we will use as operators

the standard operations of the Additive Abelian Group instead of the fancier ones that we have

introduced in the definition of a group. More precisely, instead of saying: let (G,⊕, θ,) be a

group ..., we will say: let (G,+, 0,−) be a group This will make the definitions and proofs

look more familiar since they are in additive notation. However the only properties that we

will use are those of groups and as a consequence all the results will hold for arbitrary groups,

such as, for example, the multiplicative or the Z2 group. Additionally, we will also use the

www.manaraa.com

144

shorthand notation of a	 b to stand for a⊕	b, which in our familiar additive notation, to be

used from now on, will be nothing but a− b (which stands for a+−b).

Abelian groups defined, we are ready to introduce the central concept of the paper: Condi-

tional Independence with respect to a function f .

7.3.2 Conditional Independence with respect to a function f

We now proceed to define a general notion of Conditional Independence with respect to

a function f , If (·, ·|·). This independence relation is basically a formalization of the intuition

behind decomposition presented in section 7.2: namely, that independence should allow us to

decompose a problem into subproblems, solve them separately and then combine the results. We

start with some notations (following [11]), and then present the definition and some illustrative

examples.

Notation. Let (Xα)α∈V stand for a collection of variables that take values into the spaces

(Xα)α∈V , where V is a set of indices for these variables. For a subset A of V let XA = ×α∈AXα

and in particular let X stand for XV . The collection (Xα)α∈V represents the relevant variables

pertaining to our problem. XA will stand for the set of all possible configurations for the

variables indexed by A. Typical elements of XA will be denoted as xA = (xα)α∈A. Similarly,

XA will stand for (Xα)α∈A and X will stand for XV . Given sets of variable indices A,B,C ⊆ V

we will assert conditional independence statements regarding the associated subsets of variables

XA,XB,XC such as: the sets of variables XA and XB are independent conditioned on XC and

write I(XA, XB|XC). We will actually use the shorthand formulation, A and B are independent

conditioned on C, and the shorthand notation I(A,B|C) to stand for I(XA, XB|XC).

Definition (Conditional Independence with respect to a function f - If (·, ·|·)):

Let (G,+, 0,−) be an Abelian Group, (Xα)α∈V be a collection of variables indexed by V and

X = ×α∈V Xα be the set of configurations for these variables. Let f : X → G be a function from

the set X to G. Furthermore, let A,B,C ⊆ V a partition of V (hence X = XA × XB × XC).

Then we say that A is independent of B conditioned on C with respect to the function f , and

www.manaraa.com

145

we write If (A,B|C), if there exist two functions f1, f2 such that:

f(X) = f(XA, XB, XC) = f1(XA, XC) + f2(XB, XC)

where f1 : XA ×XC → G and f2 : XB ×XC → G.

Instead of the previous formula we will use the shorthand notation

f(V) = f(A,B,C) = f1(A,C) + f2(B,C)

�

Note that in our notion of conditional independence just defined, A,B,C is necessarily a

partition of V as opposed to the case of probabilistic independence where it is possible that

A,B,C do not cover V . In our (general) case, if A,B,C do not cover V then f(A,B,C) is

not necessarily defined. In the case of probability distribution there is a natural way to define

f(A) when A $ V based on f(V). That is, by the means of marginals. In the more general

cases that we will study, (e.g., additive independence) the equivalent notion of a marginal is

not necessarily present. As a consequence the theory developed in this context will be weaker,

and hence more general. Following the terminology of [6] independence statements I(A,B|C)

such that A,B,C cover V , will be called saturated independence statements.

Examples of Conditional Independence with respect to a function f , If (·, ·|·):

Probabilistic: If (·, ·|·): In the case when the group is ((0,∞), ·, 1, −1) and furthermore

the function f : X → (0,∞) is a probability distribution (that is,
∑

x∈X f(x) = 1, or more

generally ∆X df = ∆X f(x)dx = 1) then our notion of conditional independence If (·, ·|·) be-

comes probabilistic conditional independence. Note that this group includes strictly positive

probabilities only, in order to satisfy the group property (0 has no inverse element). If (A,B|C)

in this case is equivalent with:

f(A,B,C) = f1(A,C) · f2(B,C)

obtained by substituting in the definition the original + with the probabilistic group binary

operator ·. This is an alternative definition for probabilistic conditional independence, see [11].

Thus, we have just shown that probabilistic conditional independence is a particular case of

www.manaraa.com

146

Conditional Independence with respect to a function f , when f happens to be a probability

distribution.

Additive: If (·, ·|·): In the case the group is (R,+, 0,−) and we have a function f : X → R

we obtain the notion of Additive Independence i.e.:

f(A,B,C) = f1(A,C) + f2(B,C)

Relational: If (·, ·|·): In the case the group is Z2 = ({0, 1},⊗, 0,−) and we have a function

f : X → Z2 (a.k.a. relation) we obtain:

f(A,B,C) = f1(A,C)⊗ f2(B,C)

Given our definition of Conditional Independence If (·, ·|·), which was derived in an intu-

itive and model-driven way, it is natural to ask how compatible it is with various axiomatic

frameworks that have been proposed to characterize the phenomenon of Conditional Indepen-

dence - dating back at least since [5]. In the next section we will state and prove the most

important axioms/properties that hold for If (·, ·|·), while postponing a more detailed analysis

and comparison with other axiomatic frameworks to the discussion section.

7.3.3 Properties of If (·, ·|·)

In this section we prove some properties associated with If (·, ·|·). These are general prop-

erties that researchers [5], [13], [12], [6], [4] have identified as desirable for conditional indepen-

dence relations because they capture some intuitive notions that pertain to independence. We

will show that the our Conditional Independence relation with respect a function f - If (·, ·|·)

satisfies these properties, thus providing supporting evidence that this is the “right” concept .

Theorem 1 (independence properties): Let (G,+, 0,−) be an Abelian Group, (Xα)α∈V

be a collection of variables indexed by V , f : X → G be a function from the set X to the group

G, and A,B,C,D be subsets of V . Then the Conditional Independence relation with respect to

f , If (·, ·|·) has the following properties:

1. (Trivial Independence) If (A, ∅|B) - ∀A,B a partition of V .

www.manaraa.com

147

2. (Symmetry) If (A,B|C) iff If (B,A|C) - ∀A,B,C a partition of V .

3. (Weak Union) If (A,B ∪D|C)⇒ If (A,B|C ∪D) - ∀A,B,C,D a partition of V .

4. (Intersection) If (A,B|C ∪ D) & If (D,B|C ∪ A) ⇒ If (A ∪ D,B|C) - ∀A,B,C,D a

partition of V . �

Proof. See Appendix 7.6.1�

Note that: in order to prove Trivial Independence we need the identity element property

of the Abelian group (G,+, 0,−); to prove Symmetry we needed commutativity; and to prove

Intersection we needed associativity and most importantly the inverse operator. So it seems

that we “need” all the Abelian Group properties.

As a consequence of the abovementioned properties holding we can obtain for free some

results that are already known to hold in frameworks that use these properties as axioms. The

survey of such results, mainly involving the relationship of independence properties with graph

theoretic properties that hold in the induced independence graph, will be the purpose of the

next subsection. What we cannot get for free are model-based results such as the equivalence

of such independence properties with a factorization property of the model (in our case the

function f), or completeness theorems. Such model-theoretic results depend upon the class of

models under consideration and will be the subject of the rest of this section.

The axiomatic frameworks for characterizing Conditional Independence cited at the beg-

gining of this subsection were mainly developed with the probabilistic model in mind. From

this point of view the question that we ask in this paper is whether there exist a more general

class of models where a notion of Conditional Independence “makes sense”. We have already

seen that we can talk about additive and relational Conditional Independence in a well defined

way as particular cases of Conditional Independence with respect to a function f . Our strive

for generality however may force us to drop some of the axioms that were holding in the prob-

abilistic case. More exactly we have seen that in the general case we shall restrict ouselves to

saturated independence statements (i.e., where the variables involved form a partition of the

whole set) because non-saturated statements depend upon a well defined notion of marginals

www.manaraa.com

148

exiting in the model (the function f) and such a notion is an idiosyncratic concept pertaining to

probabilities but not necessary existent in the case of additive functions, and in general for that

matter. Under such constraints we will show that properties 1.-4. interpreted as axioms are a

complete characterization of the saturated Conditional Independences that hold with respect

to a function over an Abelian Group. Such a completeness theorem along with the fact that

in order for these properties to hold in the model we needed it to be a function which takes

values into an Abelian group make a strong argument for the fact the properties 1.-4. are a

strong “axiomatic core” for Conditional Independence in quite a general setup, with functions

that take values into an Abelian group as its set of models. Such an argument is furthermore

strengthen by the main theorem of this paper: which establishes equivalence of the Markovian

graph theoretic properties of the independence graph with a factorization property of the model

(the function f which ranges into an Abelian Group) under the assumption of 1.-4..

Therefore the answer to our question will be: Yes, there exists a more general set of models

where a notion Conditional Independence “makes sense” (with respect to saturated indepen-

dence statements) and this set is F·→AG (functions whose ranges are Abelian groups), and 1.-4.

are a complete axiomatic characterization of the (saturated) independecnes that hold in these

models.

The rest of this section is organized as follows: In the next subsection we survey the results

that come for free as a consequence of properties 1.-4. holding. Subsequently, in the next

two subsections we present the model dependent results: the factorization theorem and the

completeness theorem, respectively.

7.3.4 Markovian Properties of Independence

We start with a survey some known results regarding Conditional Independence relations

satisfying the above-mentioned four properties [6]. We first introduce some graph terminology,

then define different types of Markov properties and subsequently, establish their equivalence.

We end with a theorem that states the equivalence between graph separability and conditional

independence. All results hold under the assumptions of: trivial independence, symmetry, weak

www.manaraa.com

149

union and intersection.

Graph notions: A graph is a pair G = (V,E) where V is a finite set of vertices and E is

a set of edges. That is, E is set of pairs of vertices E ⊆ V × V . A graph is called undirected

if it has the property that for every α, β ∈ V (α, β) ∈ E if and only if (β, α) ∈ E. Thus for the

case of undirected graphs there is no distinction between the edges (α, β) and (β, α) and we

will use them interchangeably to mean the same thing, namely an undirected edge between α

and β. In what follows we will only consider undirected graphs.

A graph G = (V,E) is called complete iff there is an edge between all of its vertices.

A subgraph of a graph G = (V,E) associated with set of vertices V ′, V ′ ⊆ V , is a graph

G′ = (V ′, E′) such that E′ = E ∩ (V ′ × V ′). A set of vertices C ⊆ V is called a clique in the

graph G = (V,E) if the subgraph of G associated with C is a complete graph. That is, there is

an edge between every two vertices in C in the graph G. A clique C is called a maximal clique

of G if there is no other clique C ′ in the graph G such that C ⊂ C ′. Given a graph G = (V,E)

we will use MaxCliques(G) to denote the set of maximal cliques of G.

Given a set A ⊆ V we denote by N (A) and call neighbourhood of A the set of vertices

from V \A that share at least one edge with an element in A. More precisely, N (A) = {β|β /∈

A and ∃α ∈ A such that (α, β) ∈ E}.

Given two vertices α, β ∈ V we say that there exists a path between α and β if there exists a

set of vertices γ1, ..., γk, k ≥ 0 such that (α, γ1), (γi, γi+1), (γk, β) ∈ E ∀1 ≤ i < k. We will call

the sequence α, γ1, ..., γk, β the path from α to β. Furthermore, given three subsets of vertices

A,B,C ⊆ V we say that C separates A from B in the graph G = (V,E) if there is no path

between a vertex in A to a vertex in B that does not contain vertices from C. We will use

SepG(A,B|C) to denote the fact that C separates A from B in the graph G = (V,E).

Definition (Markov properties): [12], [11] Let G = (V,E) be an undirected graph where

V is a set of indices into a collection of variables (Xα)α∈V . Then we say that the conditional

independence relation has the following properties relative to the graph G iff:

1. (P) Pairwise Markov Property relative to G iff (α, β) /∈ E ⇒ I(α, β|V \{α, β}) .

2. (L) Local Markov Property relative to G iff ∀α ∈ V I(α, V \({α} ∪ N (α)))|N (α)) .

www.manaraa.com

150

3. (G) Global Markov Property relative to G iff for any two sets A,B ⊆ V such that V \(A∪B)

separates A and B in the graph G we have I(A,B|V \(A ∪B)). �

It turns out that the previous three relations are equivalent for any independence relation

satisfying properties 1-4 of the previous section (trivial independence, symmetry, weak union

and intersection).

Theorem 2 (Markov properties equivalence): [13] (G) ⇔ (L) ⇔ (P) for any condi-

tional independence relation I(·, ·|·) that satisfies Trivial independence, Symmetry, Weak

union and Intersection . �

Proof. This theorem has been proved in[13] and can also be found in [12], [11], [8]. Note

that the Global Markov property is slightly weaker in our case because we have only saturated

independence and hence we cannot pick arbitrary sets that separate A and B instead of just

X\(A∪B) . Nevertheless the equivalence still holds. See Appendix 7.6.2 for a complete proof.

�

Corollary. In particular: (G) ⇔ (L) ⇔ (P) for If (·, ·|·). �

Definition (closure): Let (Xα)α∈V be a collection of variables indexed by V , Σ be an

arbitrary set of independence statements of the form I(A,B|C), where A,B,C is a partition

of V , and A a set of axioms. We denote by Σ+ the set of all independence statements that can

be inferred from the independence statements in Σ in a finite number of steps by using only

axioms from the set A. If such is the case, we call Σ+ the closure of Σ under the axioms A.�

Definition (associated independence graph): Given a set Σ of pairwise conditional

independence statements I(α, β|V \{α, β}), a graph G(Σ) = (V,E) is called the associated in-

dependence graph if (α, β) /∈ E ⇔ I(α, β|V \{α, β}) ∈ Σ. In general given a set Σ of not

necessarily pairwise conditional independence statements we define the set Σpairwise as the

set of of all pairwise independence statements that can be inferred from Σ using the Trivial

independence, Symmetry, Weak union and Intersection axioms (i.e., all pairwise In-

dependence statements from the closure of Σ, - Σ+). Furthermore we define the associated

dependence graph G(Σ) of such a general set of conditional independence statements Σ as the

associated dependence graph of Σpairwise. �

www.manaraa.com

151

Theorem 3 (separability⇔ conditional independence): [6] Let Σ be a set of saturated

independence statements over a finite set of variables (Xα)α∈V indexed by elements from V . Let

Σ+ be the closure of Σ with respect to saturated trivial independence, symmetry, intersection and

weak union. And let G(Σ+) the dependence graph associated with set of pairwise independence

statements in Σ+. Then for any A,B,C partition of V we have:

SepG(Σ+)(A,B|C) ⇔ I(A,B|C) ∈ Σ+

Proof. See [6] Theorem 13 for a proof of this theorem. �

Corollary: In particularIf (·, ·|·) satisfies the equivalence between graph separability and

Conditional Independence stated in the previous theorem.

So far we have seen that any set Σ of Conditional Independence statements produces a

graph G(Σ+) such that separability in this graph is equivalent to Conditional Independence

in the closure of Σ. If the Independence relation in question is If (·, ·|·) we have furthermore

that SepG(Σ+)(A,B|C) ⇔If (A,B|C) ∈ Σ+⇔f(A,B,C) = f1(A,C) + f2(B,C). We will next

prove the main result of the paper, namely, a theorem that will allow us to “compile” pairwise

decompositions that are implied by conditional independence statements between two sets of

variables conditioned on a third one, of the form If (A,B|C) ∈ Σ+⇒f(A,B,C) = f1(A,C) +

f2(B,C) into a “finer” decomposition over the maximal cliques of the associated graph G(Σ+).

In other words, this theorem shows that if the four properties are satisfied, we can “boil down”

a set of pairwise decompositions to one “holistic” decomposition over the maximal cliques of

the associated graph G(Σ+).

7.3.5 The factorization theorem

We now proceed to state the theorem that ties the Conditional Independence relation with

respect to a function f , If (·, ·|·), with a factorization property of the function f over the

maximal cliques of the associated graph.

Definition (factorization property): Let G = (V,E) be an undirected graph, let

(G,+, 0,−) be a group, (Xα)α∈V be a collection of variables indexed by V and f : X → G

www.manaraa.com

152

Figure 7.1 Illustration of the intuition behind the factorization theorem:
A set of pairwise, rougher decompositions are assembled into
one holistic, finer decomposition over the maximal cliques of
the induced independence graph.

be a function from the set X to the group G. We say that f satisfies the factorization prop-

erty (F) with respect to the graph G iff there exist a collection of functions {fC : XC →

G}C∈MaxCliques(G)

(F) f(V) =
∑

C∈MaxCliques(G)

fC(C)

Theorem 4 (factorization): Let G = (V,E) be an undirected graph, (G,+, 0,−) be an

Abelian Group, (Xα)α∈V be a collection of variables indexed by V , f : X → G be a function

from the set X to the group G. Let If (·, ·|·) conditional indepedence relation induced by the

function f . Then (G) ⇔ (L) ⇔ (P) ⇔ (F), where all the Markov properties are with respect

to If (·, ·|·). �

Proof. See the Appendix 7.6.3 for the proof.�

An illustration of the intuition behind the factorization theorem is shown in Figure 1.

In the particular case when f is a probability distribution the last implication in the pre-

vious theorem ((P) →(F)) is known as the Hammersley-Clifford theorem [3]. The proof tech-

nique based on the Moebius Inversion Lemma which we also use was first used for proving the

Hammersley-Clifford theorem for probabilities in [7], see also [7], [8]. To the best of our knowl-

edge, the proof presented here is the first proof that holds for the general case of conditional

www.manaraa.com

153

independence with respect to a function f which ranges into an Abelian Group.

7.3.6 Completeness

In this section we state a completness theorem which states that the axioms of trivial

independence, symmetry, intersection and weak union are a complete characterization for the

independencies that hold over functions which take values into an Abelian Group G.

Definition (satisfaction): Let f : X → G be a function that takes values into an Abelian

Group (G,+, 0,−) and let A,B,C is a partition of V . We say that f satisfies a conditional

independence statement σ = I(A,B|C) if If (A,B|C).

Definition (Markov Network): A graph G = (V,E) is called a Markov Network for a

function f : X → G iff for all partitions into three sets of V , A,B,C we have SepG(A,B|C)⇒

If (A,B|C).

Theorem 5 (completeness): Let f : X → G be a function that takes values into an

Abelian Group (G,+, 0,−) . Let Σ be a set of saturated independence statements over sets in

V , and let Σ+ be the closure of Σ with respect to trivial independence, symmetry, intersection

and weak union. Then for every σ /∈ Σ+, there exists a function f : X → G such that f satisfies

Σ+ and does not satisfy σ. �

Proof. This is the generalization for Abelian groups of the existing completeness proof for

probablity distributions from [6]. See the Appendix 7.6.5 for the proof.�

Note that if the group G has only one element then there exists only one function from any

domain to G (the one that maps all the elements of the domain to the unique element in G)

and therefore the problem of completeness is vacuous.

The (completeness) theorem along with the (separability ⇔ conditional indepen-

dence) theorem allow us to determine conditional independence statements relative to the

function f by the means of examining separation in the associated graph see [6] for more

details.

www.manaraa.com

154

7.4 Particular Cases

We now review some important examples of functions over particular Abelian Groups and

the associated factorization theorems.

Probability Theory In the case when we consider functions f : X → (0,∞) where the

group is ((0,∞), ·, 1, −1) and additionally we impose the constraint that
∑

x∈X f(x) = 1, or

more generally ∆X df = ∆X f(x)dx = 1, we obtain strictly positive probability distributions

and the notion of conditional independence becomes probabilistic conditional independence.

By the factorization theorem with respect to an associated graph G we can decompose the

probability distribution in terms of clique potentials fC as:

f(V) =
∏

C∈MaxCliques(G)

fC(C)

This is precisely the Hammersley-Clifford theorem [3], [7], [11], [8].

Additive Decomposability / Value Theory When we consider functions f : X → R

where the group is (R,+, 0,−) we obtain an additive decomposition of the function f over the

maximal cliques of the associated graph G.

f(V) =
∑

C∈MaxCliques(G)

fC(C)

This decomposition theorem can be used to decompose value functions or fitness functions.

A set of theorems in the same spirit, while not in the same framework are the utility decom-

position theorems. See [1] and references therein.

Relational Algebra A relation is a function r : X → {0, 1}. If we consider the group

Z2 = ({0, 1},⊗, 0,−) we can decompose any relation r in terms of smaller relations defined

over subsets of V . In this case the factorization theorem with respect to an associated graph G

will be:

r(V) =
⊗

C∈MaxCliques(G)

rC(C)

www.manaraa.com

155

7.5 Conclusions and Discussion

Review: In this paper, we have introduced a general notion of Conditional Independence

/ Decomposability. Following the intuitions derived from the general case, we introduced the

notion of Conditional Independence relative to a function f which takes values into an Abelian

Group, - If (·, ·|·). We then proved that If (·, ·|·) satisfies the following four properties: trivial

independence, symmetry, weak union and intersection, which are held to be important prop-

erties for the notion of independence [12]. As a consequence, we obtained the equivalence of

the Global, Local and Pairwise Markov Properties for If (·, ·|·), as well as the equivalence be-

tween Conditional Independence and Graph Separability in the associated graph, based on well

known results e.g., [6]. We then proved the main theorem of this paper, which allows us to “boil

down” a set of pairwise Conditional Independences (and consequently pairwise factorizations)

of the function f to a “global” factorization of f over the maximal cliques of the associated

independence graph. This theorem is the natural generalization of the Hammersley-Clifford

theorem which holds for probability distributions, to the more general case of functions that

take values into an Abelian Group. The theory developed in this paper subsumes: factorization

of probability distributions, additive decomposable functions and decomposable relations, as

particular cases of functions over Abelian Groups.

Discussion: In contrast with the more traditional framework for probabilistic independence

i.e., graphoids [12], our notion of independence does not support contraction [I(A,D|C) & I(A,B|C∪

D) ⇒ I(A,B ∪ D|C)] and decomposition [I(A,B ∪ D|C) ⇒ I(A,B|C)]. Decomposition is

essentially a way to support non-saturated independence statements and hence it requires

marginals, but marginals are not generally available since they appear to be an idiosyncratic

feature of probability distributions. Thus it is understandable that we had to drop decompo-

sition in our quest for generality. Contraction had to be dropped as well because one of its

premises contains a non-saturated statement. A weaker version however, called Weak Con-

traction [I(A ∪ B,D|C) & I(A,B|C ∪ D) ⇒ I(A,B ∪ D|C)] that was used in [6] does not

require non-saturated statements and is satisfied by our independence relation If (·, ·|·). This

follows from the observation that Weak Union and Intersection imply Weak Contraction (see

www.manaraa.com

156

Appendix 7.6.6). The Intersection property is sometimes dropped from probabilistic indepen-

dence axioms in order to obtain semi-graphoids [12]. Both the graphoid and semi-graphoid sets

of axioms however have been shown to be incomplete for non-saturated probabilistic conditional

independence statements [14]. In other words [14] shows that any finite set of axioms is an in-

complete characterization of non-saturated probabilistic conditional independence statements.

In our case, since we use only saturated independence statements due to the unavailability of

marginals in the general case, a completeness theorem can be proved. We proved a completeness

theorem which states that the axioms of trivial independence, symmetry, intersection and weak

union are a complete characterization of Conditional Independences that hold for a function

f which ranges into an Abelian Group. This theorem is a natural generalization, for functions

over Abelian groups, of a completeness theorem for positive probability distributions and the

four above-mentioned axioms in a saturated probabilistic conditional independence setup, that

was previously obtained by [6].

Conclusion: In conclusion we have indentified a larger set of models - functions which range

over Abelian groups, for which a well defined notion of saturated Conditional Independence

“makes sense”. (It had to be saturated because nonsaturated statements seem to require the

existence of marginals in the model, which we consider as a quite idiosyncratic feature of

probabilities). We have also proved that trivial independence, symmetry, intersection and weak

union consist in a complete axiomatic characterization of independences which hold over that

set of models and furthermore it seems that the Abelian group properties of the range are

required for the model in order to prove that these four axioms hold. This pieces of evidence

give significant support to the claim that these four properties, are indeed an “axiomatic core”

for a very general notion of Conditional Independence in the saturated setup, and functions

which range over Abelian groups are their natural set of models. Furthermore such a tie is

strengthen by the existence of the factorization theorem - the natural generalization of the

Hammersly-Clifford known to hold for probabilities.

www.manaraa.com

157

7.6 Proofs of the theorems

7.6.1 Proof of Theorem 1 (independence properties)

Theorem 1 (independence properties): Let (G,+, 0,−) be a group, (Xα)α∈V be a

collection of variables indexed by V , f : X → G be a function from the set X to the group G,

and A,B,C,D be subsets of V . Then the Conditional Independence relation with respect to f ,

If (·, ·|·) has the following properties:

1. (Trivial Independence) If (A, ∅|B) - ∀A,B a partition of V .

2. (Symmetry) If (A,B|C) iff If (B,A|C) - ∀A,B,C a partition of V .

3. (Weak Union) If (A,B ∪D|C)⇒ If (A,B|C ∪D) - ∀A,B,C,D a partition of V .

4. (Intersection) If (A,B|C ∪ D) & If (D,B|C ∪ A) ⇒ If (A ∪ D,B|C) - ∀A,B,C,D a

partition of V .

Proof.

1. (Trivial Independence) To show that If (A, ∅|B) we have to prove that there exist f1, f2

such that f(A,B) = f1(A,B) + f2(B). By taking f1(A,B) = f(A,B) and f2(B) ≡ 0 (0 is the

identity element of G) we have the desired conclusion.

2. (Symmetry) is obvious from the definition of If (A,B|C) and the commutativity of +.

3. (Weak Union)

We want to prove that: If (A,B ∪D|C)⇒ If (A,B|C ∪D).

If (A,B ∪ D|C) implies that f(A,B,C,D) = f1(A,C) + f2(B ∪ D,C) = f1(A,C) +

f2(B,C,D) where the last equality follows from the fact that B ∩D = ∅.

To show that If (A,B|C∪D) we need to show that there exists f3, f4 such that f(A,B,C,D) =

f3(A,C ∪D) + f4(B,C ∪D) = f3(A,C,D) + f4(B,C,D) where the last equality follows from

the fact that C ∩D = ∅.

By taking f3(A,C,D) = f1(A,C) and f4(B,C,D) = f2(B,C,D) we have that f(A,B,C,D) =

f1(A,C)+f2(B,C,D) = f3(A,C,D)+f4(B,C,D) which by definition implies that If (A,B|C∪

D) .

www.manaraa.com

158

4. (Intersection)

We want to prove that If (A,B|C ∪D) & If (D,B|C ∪A)⇒ If (A ∪D,B|C).

If (A,B|C ∪D) implies that f(A,B,C,D) = f1(A,C ∪D) + f2(B,C ∪D) = f1(A,C,D) +

f2(B,C,D) (eq. 1)

If (D,B|C ∪A) implies that f(A,B,C,D) = f3(D,C ∪A) + f4(B,C ∪A) = f3(A,C,D) +

f4(A,B,C) (eq. 2). By subtracting the two equations we get

f(A,B,C,D)− f(A,B,C,D) = 0 = f1(A,C,D) + f2(B,C,D)− f3(A,C,D)− f4(A,B,C).

Let f5(A,C,D) = f1(A,C,D) − f3(A,C,D) and by moving f4(A,B,C) to the left hand

side of the previous formula we get

f4(A,B,C) = f2(B,C,D) + f5(A,C,D). But D does not appears in the left hand side (f4

does not depend on D). Let d ∈ D an arbitrary, but fixed, element of D. Then

f4(A,B,C) = f6(B,C, d) + f7(A,C, d) = f8(B,C) + f9(A,C). Now by re-substituting

f4(A,B,C) in the equation (eq. 2) we have

f(A,B,C,D) = f3(A,C,D) + f8(B,C) + f9(A,C). Finally by taking f10(A,C,D) =

f7(A,C) + f3(A,C,D) we have

f(A,B,C,D) = f6(B,C) + f10(A,C,D) which by definition implies that If (A ∪D,B|C).

�

Note that in order to prove Trivial Independence we need the identity element property

of the Abelian group (G,+, 0,−), to prove Symmetry we needed commutativity, and to prove

Intersection we needed associativity and most importantly the inverse operator −. So it seems

that we “need” all the Abelian Group properties.

7.6.2 Proof of Theorem 2 (Markov properties equivalence)

Theorem 2 (Markov properties equivalence): [13] (G) ⇔ (L) ⇔ (P) for any condi-

tional independence relation I(·, ·|·) that satisfies Trivial independence, Symmetry, Weak

union and Intersection .

Proof.

We will prove that (G) => (L) => (P) => (G).

www.manaraa.com

159

(G) => (L) is trivial by taking A = {α} and B = V \({α} ∪ N (α))).

(L) => (P) We want to prove that ∀α ∈ V I(α, V \({α} ∪ N (α)))|N (α)) implies that

(α, β) 6/∈ E ⇒ I(α, β|V \{α, β}). Since (α, β) 6/∈ E impliesβ /∈ N (α) it follows that β ∈

V \({α}∪N (α))) . By using the weak union property with A = {α}, B = {β}, C = N (α),D =

V \({α}∪{β}∪N (α))) and the fact that (α, β) 6/∈ E ⇒ β /∈ N (α) it follows that I(α, β|N (α)∪

(V \({α} ∪ {β} ∪ N (α)))) or equivalently I(α, β|V \({α} ∪ {β})) q.e.d.

(P) => (G) we want to prove that: (Prop) if C separates A and B in the graph G, then

I(A,B|C)

We will prove the property (Prop) by induction after cardinality of the separator C, |C|.

Base case: For the case when |C| = |V | − 2 the property follows trivially from the from the

Pairwise Markov Property (P). Also for |C| > |V |−2 all the independence statements are trivial

because at least one of A or B is empty; and since I(·, ·|·) satisfies the trivial independence

property they are true by default.

Inductive case: We will assume that the property is true for |C| ≥ k and prove it for

|C| = k−1, where 1 ≤ k ≤ |V |−2 . Let |C| = k−1 , then we want to prove that if C separates

A and B in the graph G, then I(A,B|C). Since k ≤ |V |−2 it follows that |C| = k−1 ≤ |V |−3

Hence at least one of the sets A and B has at least two elements. Because of the symmetry

property we can assume without loss of generality that the set is A. Let α ∈ A. From the

fact that C separates A and B in the graph G it follows that C ∪ {α}separates A\{α} from B

in G . Using the inductive assumption we get that I(A\{α}, B|C ∪ {α}) . Also from the fact

that C separates A and B in the graph G it follows that C ∪ (A\{α})separates {α} from B

in G and again using the inductive assumption we get that I(α,B|C ∪ (A\{α})). Now by the

intersection property we have that I(A\{α}, B|C ∪ {α}) & I(α,B|C ∪ (A\{α}))⇒ I(A,B|C).

�

Note that the Global Markov property is slightly weaker in our case because we have only

saturated independence and hence we cannot pick arbitrary sets that separate A and B instead

of just X\(A ∪B)

www.manaraa.com

160

7.6.3 The proof of Theorem 3 (factorization)

Theorem 3 (factorization): Let G = (V,E) be an undirected graph, (G,+, 0,−) be a

group, (Xα)α∈V be a collection of variables indexed by V , f : X → G be a function from the set

X to the group G. Then (G) ⇔ (L) ⇔ (P) ⇔ (F).

Proof. We will prove (F)⇒ (G) and (P)⇒ (F) and this will be enough to prove the theorem

because the other equivalences follow from the Markov properties theorem in the previous

section.

(F) ⇒ (G) Let G = (V,E) be a graph and f : X → G be a function that satisfies the

factorization property with respect to G. Then it follows that:

f(V) =
∑

C∈MaxCliques(G)

fC(C)

Now let A, B be two sets such that V \(A ∪B) separates A and B in the graph G. Then

f(V) =
∑

C∈MaxCliques(G)& C∩A6=∅

fC(C)

+
∑

C∈MaxCliques(G)& C∩A=∅

fC(C)

Let f1(V \B) =
∑

C∈MaxCliques(G)& C∩A6=∅ fC(C) and

f2(V \A) =
∑

C∈MaxCliques(G)& C∩A6=∅ fC(C). To show that f1 and f2 are well defined we

have to show that the right hand sides of their definitions contain only variables from V \B and

V \A respectively. Obviously f2 contains only variables that are not from A. We will show that

f1 has variables from V \B only, by contradiction.

Suppose f1 contains variables from B. Then it follows that there exists a clique C such

that C ∈MaxCliques(G), C ∩A 6= ∅ and also C ∩B 6= ∅. Let α ∈ C ∩A and β ∈ C ∩B. But

since C is a clique in G it follows that (α, β) is an edge in G, which contradicts the fact that

V \(A ∪B) separates A and B in the graph G.

Now given that f1 and f2 are well defined we can write:

f(V) = f1(V \A) + f2(V \B)

= f1(A, V \(A ∪B)) + f2(B, V \(A ∪B))

www.manaraa.com

161

Which implies, by definition, that If (A,B|V \(A ∪B)) .

(P) ⇒ (F) In order to prove this implication we will use the following helpful lemma:

Lemma (Moebius inversion): Let f and g be two functions defined on the set of all

subsets of a finite set V of variable indices, taking values into an Abelian Group (G,+, 0,−) .

Then the following two statements are equivalent:

(1) for all A ⊆ V : g(A) =
∑

B:B⊆A f(B)

(2) for all A ⊆ V : f(A) =
∑

B:B⊆A(−1)|A\B|g(B)

where, by (−1)k we mean − if k is odd and + if k is even. (Note that we need this

explicitation because multiplication is not necessarily defined over the elements of G)

Proof. A proof of this lemma can be found in [11] [8]. See also the next subsection in the

Appendix 7.6.4. �

We are now ready to prove the (P)⇒ (F) implication from the factorization theorem.

Let f : X → G be the function, which induces an Independence relation If (·, ·|·) over the

variables indexed by V and G = (V,E) the graph with respect to which If (·, ·|·) has the Pairwise

Markov property (P). Let x∗ ∈ X be an arbitrary, but fixed, element of X . We define for all

A ⊆ V the function

gA(x) = f(xA, x
∗
AC)

where (xA, x
∗
AC) is an element y with yγ = xγ if γ ∈ A and yγ = x∗γ if γ /∈ A. Since x∗ is

fixed, gA depends on x through xA only. Now, for all A ⊆ V , let

fA(x) =
∑

B:B⊆A

(−1)|A\B|gB(x)

This formula implies that fA(x) depends on x through xA only.

By applying the Moebius inversion lemma to the functions f and g we get:

f(x) = gV (x) =
∑

A:A⊆V

fA(x)

We will show next that fA(x) ≡ 0 whenever A is not a clique of G. This fact, along with

absorbing fA into fM whenever A is not a maximal clique and where A ⊂M ∈MaxCliques(G)

, will prove our factorization property (F) over the maximal cliques of the graph G. (absorption:

if A ⊂M ∈MaxCliques(G) we can redefine f ′M (x) = fM (x) + fA(x) and f ′A(x) ≡ 0).

www.manaraa.com

162

To show that fA(x) ≡ 0 whenever A is not a clique of G, let α, β ∈ A such that (α, β) /∈ E

and let C = A\{α, β}. Then we have

fA(x) =
∑

B:B⊆C

(−1)|C\B| { gB(x)− gB∪{α}(x)

− gB∪{β}(x) + gB∪{α,β}(x)}

We now want to show that gB(x)− gB∪{α}(x)− gB∪{β}(x) + gB∪{α,β}(x) ≡ 0 for all B ⊆ C =

A\{α, β}, which will prove our claim. (α, β) /∈ E implies that If (α, β|V \{α, β}) (by (P)), so

there exist f1, f2 such that

f(V) = f1(α, V \{α, β}) + f2(β, V \{α, β})

i.e.,

f(xV) = f1(xα, xV \{α,β}) + f2(xβ, xV \{α,β}) ∀xV ∈ X

by considering xV of the form (xB, xα, xβ, x
∗
R) ∀xB ∈ XB, xα ∈ Xα, xβ ∈ Xβ where R =

V \(B ∪ {α, β}) we get

gB∪{α,β}(x) = f(xB, xα, xβ, x
∗
R)

= f1(xB, xα, x
∗
R) + f2(xB, xβ , x

∗
R) (f1)

for all xB ∈ XB, xα ∈ Xα, xβ ∈ Xβ . By instantiating xβ in the formula (f1) with x∗β we get

gB∪{α}(x) = f(xB, xα, x
∗
β, x

∗
R)

= f1(xB, xα, x
∗
R) + f2(xB, x

∗
β , x

∗
R)

for all xB ∈ XB, xα ∈ Xα. Similarly by instantiating xα in in the formula (f1) with x∗α we

get

gB∪{β}(x) = f(xB, x
∗
α, xβ, x

∗
R)

= f1(xB, x
∗
α, x

∗
R) + f2(xB, xβ , x

∗
R)

for all xB ∈ XB, xβ ∈ Xβ . And finally, by instantiating both xα and xβ with x∗α and x∗β

respectively, in the formula (f1) we get

gB(x) = f(xB, x
∗
α, x

∗
β , x

∗
R)

= f1(xB, x
∗
α, x

∗
R) + f2(xB, x

∗
β, x

∗
R)

www.manaraa.com

163

for all xB ∈ XB. Now computing the formula (∗) = gB(x) − gB∪{α}(x) − gB∪{β}(x) +

gB∪{α,β}(x) with these alternative expansions we get

(∗) = f1(xB, x
∗
α, x

∗
R) + f2(xB, x

∗
β, x

∗
R)

−f1(xB, xα, x
∗
R)− f2(xB, x

∗
β, x

∗
R)

−f1(xB, x
∗
α, x

∗
R)− f2(xB, xβ, x

∗
R)

+f1(xB, xα, x
∗
R) + f2(xB, xβ, x

∗
R)

= 0

�

In the particular case when f is a probability distribution the last implication in the previous

theorem ((P) →(F)) is known as the Hammersley-Clifford theorem [3]. The proof technique

based on the Moebius Inversion Lemma was first used for proving the Hammersley-Clifford

theorem for probabilities in [7], see also [11], [8]. To the best of our knowledge, the present

proof is the first one which holds for the general case of conditional independence with respect

to a function f which takes values into an Abelian Group.�

7.6.4 The proof of the Moebius Inversion Lemma

(2) => (1)

∑
B:B⊆A

f(B) =
∑

B:B⊆A

∑
C:C⊆B

(−1)|B\C|g(C)

=
∑

C:C⊆A

∑
B:C⊆B⊆A

(−1)|B\C|g(C)

=
∑

C:C⊆A

∑
D:D⊆A\C

(−1)|D|g(C)

∑
D:D⊆A\C(−1)|D|g(C) is 0 unless A\C = ∅ , or equivalently A = C (because C ⊆ A),

and therefore the whole sum will be g(A), which proves the desired equality. To see that if

E = A\C 6= ∅ then
∑

D:D⊆E(−1)|D|g(C) is 0 we observe that there are as many pluses in this

sum as there are minuses and therefore the terms cancel out. (0 = (1−1)|D| =
∑

D:D⊆E(−1)|D|

if D 6= ∅; if D = ∅ the sum is by definition 00 = 1)

www.manaraa.com

164

(1) => (2)

∑
B:B⊆A

(−1)|A\B|g(B) =
∑

B:B⊆A

∑
C:C⊆B

(−1)|A\B|f(C)

=
∑

C:C⊆A

∑
B:C⊆B⊆A

(−1)|A\B|f(C)

=
∑

C:C⊆A

∑
D:D⊆A\C

(−1)|D|f(C)

Which by the same argument as before is equal to f(A), which proves the desired equality.

7.6.5 The proof of Theorem 5 (completeness)

Theorem 5 (completeness): Let f : X → G be a function that takes values into an

Abelian Group (G,+, 0,−) . Let Σ be a set of saturated independence statements over sets in

V , and let Σ+ be the closure of Σ with respect to trivial independence, symmetry, intersection

and weak union. Then for every σ /∈ Σ+, there exists a function f : X → G such that f satisfies

Σ+ and does not satisfy σ. �

Proof. From Theorem 4 there exists a graph G(Σ+) (the associated graph) that satisfies

Σ+ and no other independence statement. So to prove the theorem we need to show that there

exists a function f : X → G that satisfies the statements that hold in G(Σ+) and does not

satisfy σ. We will prove this in the next lemma. �

Lemma. Let G = (V,E) a graph and let A,B,C a partition of V such that C does not

separate A from B in the graph G. Let (G,+, 0,−) a group with at least two elements. Then

there exists a function f : X → G such that G is a Markov Network for f and ¬If (A,B|C).

Proof. Let (Xα)α∈V be a collection of variables indexed by V such that all variables Xα

have the same range {a, b}. We will construct a function f : X = ×αXα → G such that G is a

Markov Network for f and ¬If (A,B|C). Because G is a group with at least two elements, let

g ∈ G such that g 6= 0. From the fact that C does not separate A from B in the graph G and

the fact that A,B,C is a partition of V it follows that there exists a α ∈ A and β ∈ B such

www.manaraa.com

165

that (α, β) ∈ E . Let

f(xV) = h(xα, xβ)
∑

xγ∈V \{α,β}

g(xγ)

where g(x) = 0 ∀x ∈ {a, b}and

h(x, y) =

0 if (x, y) = (a, a)

0 if (x, y) = (a, b)

0 if (x, y) = (b, a)

g if (x, y) = (b, b)

Note that h(x, y) is not decomposable into smaller functions (i.e., h(x, y) 6= h1(x) + h2(y)-

see a proof next). The function f has the desired properties, that is If (α, β|V \{α, β}) does not

hold because h(x, y) is not decomposable and f(xV) = h(xα, xβ) hence f cannot be decomposed

into functions that separate xα and xβ . Furthermore, SepG(A,B|C) ⇒ If (A,B|C) because

If (A,B|C) holds for all sets A,B that do not separate α and β (easy to check).

We will now prove that h(x, y)is not decomposable by contradiction. Assume h(x, y) =

h1(x) + h2(y). Then

h(a, a) = 0 = h1(a) + h2(a) (7.1)

h(a, b) = 0 = h1(a) + h2(b) (7.2)

h(b, a) = 0 = h1(b) + h2(a) (7.3)

h(b, b) = g = h1(b) + h2(b) (7.4)

from equations (7.1) and (7.2) it follows (by simplifying h1(a)) that h2(a) = h2(b); Similarly

from equations (7.1) and (7.3) it follows (by simplifying h2(a)) that h1(a) = h1(b). Let g1, g2 ∈

G such that g1 = h2(a) = h2(b) and g2 = h1(a) = h1(b). Then from equation (7.1) it follows

that g1 +g2 = 0, and from equation (7.4) it follows that g1 +g2 = g, hence g = 0, contradiction.

This completes the proof of the lemma. �

www.manaraa.com

166

7.6.6 Proof that: Intersection + Weak Union ⇒ Weak Contraction

Proposition (INT + WU ⇒WC): Intersection + Weak Union ⇒ Weak Contraction.

WU: I(A ∪B,D|C)⇒ I(A,D|C ∪B)

INT: I(A,D|C ∪B) & I(A,B|C ∪D)⇒ I(A,B ∪D|C)

⇒

WC: I(A ∪B,D|C) & I(A,B|C ∪D)⇒ I(A,B ∪D|C)

Proof.

We want to prove that:

WC: I(A ∪B,D|C) & I(A,B|C ∪D)⇒ I(A,B ∪D|C)

Assume I(A ∪B,D|C) (1)and I(A,B|C ∪D) (2)

I(A ∪B,D|C)⇒WU I(A,D|C ∪B) (3)

(2) & (3)⇒INT I(A,B ∪D|C) �

Bibliography

[1] F. Bacchus and A. Grove. Graphical Models for Preference and Utility. In Uncertainty in

AI, 11, 1995.

[2] U. Bertele and F. Brioschi. Nonserial dynamic programming, Academic Press, New York,

1972.

[3] J. Besag. Spatial Interaction and Statistical Analysis of Lattice Systems. Journal of the

Royal Statistical Society. Series B (Methodological), 36(2):192-236, 1974.

[4] R. Cowell, P. Dawid, S. Lauritzen and D. Spiegelhalter. Probabilistic Networks and Experts

Systems. Springer, 1999.

[5] A. P. Dawid. Conditional independence in statistical theory. J. Roy. Statist. Soc. B, 41:1-

31, 1979.

[6] D. Geiger and J. Pearl. Logical and Algorithmic Properties of Conditional Independence

and Graphical Models. The Annals of Statistics, 21(4):2001-2021, 1993.

www.manaraa.com

167

[7] D. Griffeath. Introduction to Random Fields. In J. Kemeny, J. Snell and A. Knapp (Eds),

Denumerable Markov Chains. New York: Springer-Verlag, 1976.

[8] M. Jordan. An Introduction to Probabilistical Graphical Models (to appear). 2005 .

[9] R.L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and Value

Tradeoffs. Wiley, New York, 1976.

[10] H. Muhlenbein and R. Hons. The Estimation of Distributions and the Minimum Relative

Entropy Principle, Evolutionary Computation 13(1):1-27, 2005.

[11] S. Lauritzen. Graphical Models. Oxford Science Publications, 1996.

[12] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Publishers,

1988.

[13] J. Pearl and A. Paz. Graphoids: a graph based logic for reasoning about relevancy rela-

tions. In Advances in Artificial Intelligence-II, 357-363. North-Holland, 1987.

[14] M. Studeny. Conditional independence relations have no finite complete characterization.

In Transactions if the 11th Prague conference on information theory, statistical decision

functions and random processes, 377-396, 1992.

[15] S.K.M. Wong, C.J. Butz, and D. Wu, On the Implication Problem for Probabilistic

Conditional Independency, IEEE Transactions on Systems, Man, and Cybernetics, Part

A: Systems and Humans, 30(6):785-805, 2000.

www.manaraa.com

168

CHAPTER 8. GENERAL CONCLUSIONS

8.1 Summary

The results presented in the thesis can be divided into two sets: Results that have been

obtained prior to the full development of the theoretical part of the Abstraction + SuperStruc-

turing thesis; and results obtained afterward.

The results obtained prior to the proof of Abstraction + SuperStructuring thesis are exposed

in chapters 2, 3 and 4. These prior exploratory results along with earlier less comprehensive

theoretical results have at least partially enabled and then further reinforced the belief that the

Abstraction + SuperStructuring thesis in its full generality may have a chance to be proved at

a point in time when this was not a given. They contain in chronological order:

1. an exploration of SuperStructuring in the temporal domain - Temporal Boolean Networks

(Chapter 2) - Learning temporal SuperStructures by the means of decision trees in the

context of predicting the behavior of Genetic Regulatory Networks.

2. an exploration of SuperStructuring in the spatial domain (sequences) - Naive Bayes k

- NB(k) (Chapter 3) - Various extensions of Naive Bayes, which treats input features

independently, to the the case of k-th order dependencies in the context of function

prediction for protein sequences.

3. an exploration of Abstraction learning in the Multivariate case - Learning Attribute Value

Taxonomies (Chapter 4) - Learning Taxonomies (a particular way of organizing Abstrac-

tions) in the Multivariate case.

In Chapter 5 - Abstraction SuperStructuring Normal Forms - we presented the theoretical

argument for the of the Abstraction + SuperStructuring thesis. We showed that Abstrac-

www.manaraa.com

169

tion, SuperStructuring and their duals: Reverse Abstraction and Reverse SuperStructuring

respectively are enough in order to produce the Turing equivalent class of General Generative

Grammars. Under the Computationalistic Assumption this means that every theory can be

expressed in terms of Abstraction, SuperStructuring and their duals: Reverse Abstraction and

Reverse SuperStructuring. We also showed that this result can be seen as proving (under the

Computationalistic Assumption) a more than 200 years claim of the philosopher David Hume

regarding the “principles of connexion among ideas”. Furthermore by the means of our Ab-

stractions SuperStructuring Normal Form Theorem we have produced a characterization of the

rationales for introducing hidden variables, which are identified with Reverse SuperStructuring

and Reverse Abstraction. Subsequently we have also proposed a characterization of the radical

positivist setup which allows only empirical laws in terms of Abstraction and SuperStructuring.

In Chapter 6 - Combining Abstraction and SuperStructuring - appropriate extensions of

the earlier results from chapters 3 and 4 allowed us to present a baseline solution for acquiring

Abstraction and SuperStructuring in combination. The experimental results show that using

the two principles of Abstraction and SuperStructuring, either in isolation - Chapters 2,3 and 4,

but furthermore even better in combination - Chapter 6, can produce significant improvements

in the comprehensibility (as measured by size) and / or accuracy of the models produced. By

using a simple combination of Abstraction and SuperStructuring we have shown in Chapter

6 that we can reduce model size by (1-3) orders of magnitude for a small loss or sometimes

even a small gain in the accuracy of the models produced when compared with the model

that uses SuperStructuring only. Furthermore we have also shown the superiority of using

Abstraction as a model reduction technique over using Feature Selection. We have also provided

two algorithms (one for the Multivariate case - Chapter 4 and one for the Multinomial case

- Chapter 6) to automatically generate Abstractions for a given classification task, which we

identified as being the principal impediment in transforming the use of Abstraction into an “off

the shelf” procedure.

In Chapter 7 - Independence and Decomposability - we present a theoretical analysis of

the notion of (Variable) Independence and how such a structural analysis may impact various

www.manaraa.com

170

Numerical components, such as value functions, probabilities, relations, etc. Independence is

basically the complement of SuperStructuring - that is, if two “proximal” entities are inde-

pendent then there is little need to consider their union as bigger structural unit - hence no

SuperStructuring. In Chapter 7 we explored the notion of independence and how it can be used

to facilitate the decomposition / factorization function f which takes values into an arbitrary

Abelian group. This allowed us to treat uniformly the additive, multiplicative and relational

setups. Our main result shows that we can “boil down” a set of pairwise Conditional Indepen-

dences (and consequently pairwise factorizations) to a “global” factorization of a function f over

the maximal cliques of the associated independence graph. This theorem is the natural gener-

alization of the Hammersley-Clifford theorem which holds for probability distributions, to the

more general case of functions that take values into an Abelian Group. This theory subsumes:

factorization of probability distributions, additive decomposable functions and decomposable

relations, as particular cases of functions over Abelian Groups.

8.2 Contributions

In this thesis we have explored the problem of Structural Induction - Automatic Ontology

Elicitation. In order to deal with the problem of Structural Induction we need to solve two

main problems: 1. We have to say what we mean by Structure (What?); and 2. We have to

say how to get it (How?). In this thesis we give one possible, but very definite, answer to the

first question (What?) and we also explore how to answer the second question (How?) in

some particular cases. A comprehensive answer to the second question (How?) in the most

general setup will involve dealing very carefully with the interplay between the Structural and

Numerical aspects of Induction and will represent a full solution to the Induction problem.

This is a vast enterprise and we only touch some aspects of this issue.

The contributions of the thesis can be divided into a theoretical and a practical part re-

spectively:

1. On the the theoretical side:

www.manaraa.com

171

(a) Abstraction + SuperStructuring thesis - In Chapter 5, in the form of the

Abstraction SuperStructuring Normal Form theorem (ASNF) we have given one

possible, but very definite and intuitive, answer to the problem of What? we mean

by structure. Namely: Abstraction (grouping similar entities under one overarch-

ing category) and Super-Structuring (grouping into a bigger unit topologically close

entities - in particular spatio-temporally close) along with their duals: Reverse Ab-

straction and Reverse SuperStructuring.

(b) Hidden Variables Operators: Reverse Abstraction + Reverse SuperStruc-

turing - In Chapter 5, by examining the types of rules present in the Abstraction

SuperStructuring Normal Form we have identified the ones that can introduce “hid-

den variable explanations”, namely Reverse Abstraction (alternative causes) and

Reverse SuperStructuring (concurrent “proximal” causes).

(c) Radical Positivism: Abstraction + SuperStructuring - In Chapter 5, by elim-

inating the productions that can introduce hidden explanations: Reverse Abstrac-

tion and Reverse SuperStructuring we have proposed the remainder: Abstraction

and SuperStructuring, represents a precise characterization of the radical positivist

position which allows empirical laws only. (Chapter 5)

(d) Proof of Hume’s claim on the principles of connexion between ideas - In

Chapter 5, the Abstraction SuperStructuring Normal Form theorem (ASNF) under

an appropriate interpretation can be seen a a proof, under the Computationalistic

Assumption, of a more than 200 years old claim of the philosopher David Hume

about the principles of connexion among ideas (Chapter 5)

(e) General factorization theorem for functions which take values into an

Abelian group - In Chapter 7, we explored the notion of independence and how

it can be used to facilitate the decomposition / factorization function f which takes

values into an arbitrary Abelian group. The main theorem shows that we can “boil

down” a set of pairwise Conditional Independences (and consequently pairwise fac-

torizations) to a “global” factorization of a function f over the maximal cliques of the

www.manaraa.com

172

associated independence graph. This theorem is the natural generalization of the

Hammersley-Clifford theorem which holds for probability distributions, to the more

general case of functions that take values into an Abelian Group. This theory sub-

sumes: factorization of probability distributions, additive decomposable functions

and decomposable relations, as particular cases of functions over Abelian Groups.

2. On the practical side:

(a) Exploration of SuperStructuring - In Chapters 2 and 3, we have showed the

merits of using SuperStructuring in the temporal and spatial domains in contexts of

genetic regulatory networks and protein function prediction respectively.

(b) Exploration of Abstraction Learning - In Chapter 4, we have introduced a

method for deriving automatically Attribute Value Taxonomies for the Multivari-

ate classification case and showed its merits in producing taxonomies competitive

with humanly generate ones, both in providing more comprehensible models and

occasionally also in producing more accurate classification results.

(c) Exploration of the combination between Abstraction and SuperStructur-

ing - In Chapter 6, we have made the case for the combination of Abstraction and

SuperStructuring as complementary approaches. We have shown that in this way

we can produce significant improvements in the comprehensibility (as measured by

size) of the models for a small loss or even occasionally a small gain in accuracy. We

have also shown the superiority of using Abstraction as a model reduction technique

over using Feature Selection. We have also provided two algorithms (one for the

Multivariate case - Chapter 4 and one for the Multinomial case - Chapter 6) to au-

tomatically generate Abstractions for a given classification task. This eliminates the

principal impediment in transforming the use of Abstraction into an “off the shelf”

procedure as Feature Selection is.

www.manaraa.com

173

8.3 Future work

In the future additional work can be envisioned in the veins open by this thesis. We outline

below a few possible directions:

• Explore additional methods for combining Abstraction and SuperStructuring such as

more sophisticated search mechanisms and more complex setups (e.g., allow recursion

and also Reverse Abstraction and Reverse SuperStructuring)

• Explore model-based setups for feature evaluation and techniques to scale up such ap-

proaches in the context of combining Abstraction and SuperStructuring

• Use an Algebraic Geometry / Algebraic Topology foundation for the models.

• Apply similar techniques or combine with already existing ones in the related areas of

Kernel Learning and Spectral Methods

• Develop techniques for automatic object/entity elicitation

	2008
	Structural induction: towards automatic ontology elicitation
	Adrian Silvescu
	Recommended Citation

	tmp.1430412486.pdf.KGHpG

